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INTRODUCTION

'

1.1 Task History

PRI

e

14

v
PTLIR, SEPP

RO

e

The research effort reporled here was performed in the Digital Signal

USRI

ﬁ Processing Laboratory of the School of Electrical Engincering at the Georgia @
. N
:f [nstitute of Technology. In this effort, the Georgia Institute of Technology 1
o N L o — 3

et e

. i' .." " “'.'..’
__‘..M.'J...h“iﬂx'_, Caal

- was the prime contractor and the Dynastat Corporation of Austin, Texas opcrated

{
)

i . as a subcontractor. The monitoring officer at the Defcense Communications

Engincering Center was Mr. Kenneth Fischer.

i

This task, which sought to develop ncw compactly computable objective » }

iq measures for the prediction of subjective quality asscssments of spcech coding - ié
systems, followed previous work by both Georgia Tech [1.1-1.13] and the -'?

Dynastat Corp. [1.5) [1.14] {1.15] in reclate arcas. In this study, all of the _'g

! rcscarch work was performed at Georgia Tech, while the Dynastat Corporation's '.?é
B sole function was to perform the required subjective qualily cvaluations. ig
. -
N -
X 1.2 Technical Background 4
[ @

In recent years. considerable effort has been devoted to the development

- of efficient digital spcech coding algorithms for the transmission and storage ;if

of specech signals. These algorithms represent a wide range of approaches to “i
A . )
the speech coding problem, and a correspondingly wide range of data rates, Sy
- computational intensities, and percecived distortion characleristics. At the j;'l
high data rates, such simple systems as mu-law and A-law PCM coders opcrate G
‘ =

with toll quality at around 64K bps. At intermediate rates (32K bps-9.6K bps)

]

such systems as DM [1.16], ADM [1.17][1.18], DPCM [1.19]. ADPCM [1.20], AIC 1

-

f1.21], SBC (1.22]., and ATC [:.23][1.24] arc currently being used und proposed. _5

q . ®
In addition "gupped analysis® [1.20][1.25] or 'harmonic scaling’ [1.26] s also T

_jl

2

1

-

1 ;i

. ‘

i
A .
" ._M__.A.
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effective in reducing bit rates in this range. At the lower data rates (2.4K
bps-200 bps), fixed rate pitch excited LPC [1.27-1.29] and channel [1.30-1.32]
vocoders are being used, and variable rate [1.33][1.34], vector quantized
[1.35]}[1.38]. and recognition/synthesis [1.37][1.38] systems are becing
proposed. In addition, considerable progrcss is now being made in th. ©.6-2.4K
bps range by such techniques as noise fcedback [1.39] and run-length-coding
[1.40] in APC and parsmetric cxcitalion representations in residual ecxcited
vocoders [1.41][1.42].

The problem of rating and comparing thcse systems from the standpoint of
user acceptance is a difficull one, since the candidate systems are wusually
highly intelligible. llence, context free inteiligibility tests such as the DRT
{1.47}) and the MRT [1.48] may not suffice to resolve small differcnces in
acceptability. User prefcrence tests, such as the PAIM [1.15], the QART
{1t.15], and the more modern DAM [1.16} can be elfective in asscssing qualily,
but they all suffer from the inherenlL drawbacks of subjcctive tests. These
include both the grcat carc which must be excrcised to obtain rcpcatable
subjective rcsults and the corresponding cxpense and lack of [lexibility
associaled with such testing.

Objcctive acccptability measures, on the other hand, do not suffer from
many of the problems of subjective tests {1.1-1.13]. On thec whole, they arc
casy to administer and many have proved to be very reliable [1.19]. Likewise,
many objective mecasurcs can be implemenied in recal-time or ncar-rcal-time,
which vastly extends their flexibility. Aiso, objcclive measurcs may often be
used dircctly in the design of spcech coding systems in ways which arc not

possiblc with subjective mcasures.

The problem 1s that it would be niive o cr.cve that any simplec,
compuctly computable objective measure could « - . designed which would
always correlate wel!l with subjcctive quality results ucross a large censcemble

2
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of coding and other distortions, Despite our poor understanding of the speech
perception process at present. we can assuredly state that the human listener
is an active perceiver who uses his immense knowledge of the language, the
talker, and the semantic and syntactic context to 'fill in the gaps’ in the
perceived speech. Hence, it is clear thal no objective measure which does not
use semantic, syntactic, and talker related information can ever be cxpected to
perform well across all possible speech distortions, and such measures are
clearly not possible with our current knowledge. On the other hand, it is fair
to say that with the possible exception of very low bit rate
recognition/synthesis systems, the distortions found in speech coding systems
are not synchronized with the scmantic, syntactic, or talker related fcatures
of the speech signal.

The challenge in the design ol compactly computable objective mecasures is
hence to rcalize maximum wutility from a set of intrinsically imperfect
procedures. Until recently, the relative performance of diffcrent objective
measures in terms of their ability to predict subjective quality results has
not been well understood. However, in a recent study funded by the Defense
Communications Agency (DA100-78-C-003) [1.5] and later by the National Science
Foundation (ECS-801-8712) the relative performances of many objective specech
quality mecasures have been addressed in detail [1.1-1.13]. In many ways, the
rescarch which is being recported in this documvnt can be considcred to be a
continuation of these studics.

1.3 The Technical Approach

In the ecarlier research, the cmphasis was on comparing and quanlifying the
performance of a large number of paramclric variations of simple objective

mecasurcs. The basic methodology employed in both the carlier rescarch and in

this rescarch, which is based on correlation analyses between objective and
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subjective speech quality measures applied across a large ensemble of coded and
distorted speech, is described in detail in Chapter 2 of this report. At
onset of this research, about 2000 objective measures had been studied wusing
about 140,000 individual correlation analyses.

The experimental and rescarch environment developed in the previous
research efforts offers a unique opportunity for the design, implementalion,
and evaluation of new, more complex objective speech quality measurcs. On the
one hand, the body of the research performed over the last five ycars has
provided a good understanding of the relative perlormance of a large number of
individual objective measures. On the other hand, the cxperimental environment
itself both offers an efficient method for testing objective measures and also
represents an outstanding resource for the design of ncw objeclive mcasures.
In this context, the goal of this research was to use the exisling resources to
maximum advantage in developing and evaluating a new set of objective mcasures
for the c!{ficient prediction of the user acceptance of spcech coding systems.

Two particular application areas f{or objecltive quality measures arc
particularly appropriate to the concerns of the Delense Communications Agency.
The first is the area of designing devices for field testing the performauce of
digital «coding systems which are either becing installed or which may have been
dcgraded by system failures. The sccond is the arca of developing techniques
to be wused in conjunction with subjective quality mcasurcs for improving the
resolving power or reducing the cout of systcem acceptability assessment. This
rescarch explicilly addressed both of thesc arcas.

The constraints imposed by the two applications arcas are quite different.
Algorith-.4 to be wused by quality assessment devices in the field must be
compactly computuble to allow for their implementation on modern signal
proccssing hardwarc. Likewise, they should be extremely scensitive Lo any

sy3stem degradation, and =hould indicate with high resolution whelther the system
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is ‘working correctly’. In addition, if the system quality is degraded, such
algorithms should give good estimates of the loss of quality due to the
dcgradation. The general applicability of these devices to a very large class
of coding systems is of secondcry concern in this environment. since the
ensemble of coding systems is limited. The key research question in this arca,
thereforc, i3 given computational constraints, how large a class of distorting
systems can be effectively addressed by composite objective mecasures.

On the other hand, algorithms to be used primarily for quality assecssments
must conform to a different set of constraints. First, of course, since they
may be performed in non-real-time, they may be moderatcly computationally
intense (as compared to the highly computationally intense iterative measures
cmployed in digital coder design). l.ikewise, they must address a far broader
range of distortions if they are to be effective. In this regard, it may be
possible to develop objective measures tuned to some general distortion
characteristics (e.g. waveform coders, pitch excited vocoders, or {rcquency
domuain coders), but any such dynamic variation in the application of the
objective measurec algorithm must also be driven objecctively. To design such
measures effectively, it s important to configure the algorithms in a
perceptually rclevant way. Stated another way, if a broad class ol distortions
arc Lo be included, objective mecasures should be designed to estimale
quantities which arc directly rclated to the quality dcgradations perccived by
humans .

The design of objective specech quality measurces for these .wo applicalions
arcus werc addressed in the context of a Lhree part study. Although in somc
scnsc all three parts address both application areas, the first Lwo parts werc

particularly intended to address issucs germanc to the general qualily

assgcssment problem, while the third part addressed the ficld qualily Lteating
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1.4 Objective Measures Based On Signal Processing Models For The Inner Ear

The first part of the research dealt specifically with designing new
objective speech quality measures based on signal processing models for the
inner ear. A detailed description of this research and its results is givea in
Chapter 4.

Briefly, the question of designing and assessing objective measurcs based
on aural models was addressed in a three phase study. In the [first phase,
models related to those previously proposed along with possible augmentations
were studied, and a set of parameterized objective measures were developed. In
the sccond phase, the control parameter space was studied using correlation
analysis techniques described in Ctapter 2. In the final phase, the optimized
objective measures from phase two were combined with other objective measures
to form improved composile measures.

For the most part, the objectivz measures studied here can be considerad
to be parametcorized, frcquency-variant spectral distance measures. In the
origina; research [1.5], the best of this class of measurc was found to have a
correlalion coefficient of .60 across all distort,ons for frecquency-invariant
spectral distance measures, and a correlation coefficient of .71 for frequency-
variant spectral distancc mcasures. The new measurcs designed in this rescarch
were able to achieve a correlation coelficient of .78 across the same
distortion cnsemble. This can be considered to be a good, although no
spectacular, improvement for this class of measure. The best results were
obtaincd for mecasurcs designed using the principals first suggested by Dennis
Klatt {1.49]. Based on these and other rclated results, it is a rcasonablec
conjccture that the level of performance achieved here is ncar the maximum

which can be cxpected from simple, fully paramcterized spectral distance

measuyres .,
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1.5 Parametric Objective Quality Measures

Two of the attractive features ol the DAM [1.14] are that its parametric
subjective quality estimates serve to give insight into the perceived nature as
well as the perceived level of the distortion and the regression model which
relates the parametric subjective qualities to the estimated system
acceptability gives insight on the relative importance of different parametric
qualities. If an objective measure is to succeed over a large class of
distorting systems, then it must somehow incorporate information related to the
perceived nature of the distortion.

Part two of this study was aimed at designing a better objective quality
measure based on individual parametric objectivc measures. A detailed
description of this research is given in Chapter 5. In the first phase of this
gtudy, multi-dimensional scaling was used to characterize the relationship
between the objective measures previously designed, the isometric subjcctive
specech quality measures, and the paramelric subjective speech quality measures.
This initial analysis proved to be the key to designing bectter objective
measurcs in that it characterized the problem in such a way that the design
issucs became obvious. In the second phase, a regression analysis was
performed which showed cxactly which parametric measures are most important in
predicting system acceptability. As a result of this regression analysis, a
subsct ol paramctric subjective measures way identified for further study. In
the ensuing phases, a specific objective measure was designed to predict cach
of thc parametric subjective measures in the subset. This design was donec
interactively wusing statistical analysis techniques on the specch quality data
bascy.

On the whole, the rcsults of this part of the research werc very good. In

particular, it was possible to identify exactly where the previcusly proposed

objective mecasurc wcre breaking down, and further. it was possible to sce
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exactly what had to be done to correct the problem. What had to be done, in
this context, was to design particular new objective measures which predicted
particular parametric speech quality measures. The result of this effort was a
number of new parametric objective measures which did an exceptional job at
predicting many of the important parametric subjective measures.

In effect, what has been designed and studied here is an objective version
of the DAM. The test will provide an overall acceptability estimate and set of
parametric quality estimates for individual perceived qualities. It would be
naive, of course, to expect such a measure to perform comparably with the DAM
itself. However, such a test along with a complete statistical analysis of its
projected performance, should prove very vaiuable in poth screening of systems
belore the application of subjective quality tests and in providing
analytically tractable information on the nature of the distortion for use in
the coder design problem.

It would be misleading to imply that this study was completely successful.
In particular, the performance of the new paramctric objective measures -was
varied, and whereas some performed extremely we!l, others were not as suc-
cessful. Nevertheless, it is fair to say that these results represent a major
improvement in our understanding and our ability to implement objective spcech
quality measures.

1.6 Clasgified Objective Measures

The third part of the research was a systematic sStudy of classified
objective measures as applied to distortion subsets. A classified objnctive
measure is one which performs differently based on ‘classification information’
which is available. This information may be an external input to the mcasure
(such as an operator supplied classification) or it may be an intecrnally

supplied parameter (such as an objective classification of sound segmecnts into
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approximate linguistic categories). The details of this research are found in Ld
-4

Chapter 6. =
o

The research on classified objective measures really had two goals. The ,%

first goal was to investigate the use of classified measures for very narrow
classes of measures. The purpose of this part of the study was to design
measures appropriate for fiecld testing communications systems where the class
of system in use was known. The second goal was to design new, broad basecd
classified measures for a large ensemble of distortions. The basic approach
used in this part of the research was to use statistical techniques to identify
distortion subsets for which the subjective measures could be predicted well by

the objective measures under study.

It is fair to say that the research on the classified objective measures
was the least successful of the three approaches. It is true that the work

clcarly illustrated the viability of using narrowly classified objective

T

measures for ficld testing applications. It is also true that it was clearly
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%
A
;
*®
:

illustrated thal the distorted data base could be partitioned so that high

quality classified objective measures could be designed for use with a large

Pl e .
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distortion ensemble. The problem was that (}: members of the required

distortion subsets appeared to be so dissimilar irn both their perceptual
characteristics and their signal characteristics that we were unable to
adcquately specify ecither objective or subjcctive rules for classifying the
distortion. This does not really prove that this approach is without merit. ;E
It means, rather, that at this time we have not been ahle to discover

distortion classification techniques which work well enough to prove out the :‘
k|
approach. :

The Distortion Enscmble Augmentation

The final task which was addressed as part of this resecarch contract was ‘
E

the augmentation of the existing distortion cnsemble from 264 distortions to -
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318 distortions. Fundamentally . two classes of distortions were included in
these new distortions. The first were a set of speech coding techniques which
had been developed and become common since the original data bases were
developed in 1978, These new coding distortions included subband coders,
adaptive transform coders, ADPCM with noise feedback, multi-pulse LPC, and
channel vocoders. The second were a new set of 'banded pole distortion’
controlled distortions [1.5]. The purpose of these new controlled distortions
was to increase the overall spread of subjective responses, which had been
inadeauate in the first study. The new coding and controlled distortions are
described in detail in Chapter 3.

The basic design criterion for all of the distortions was to have each
range f{rom ‘barely perceivable' to 'moderately distorted’. All of the new
distortions met this criterion with the possible exception of the channel

vocoder, for which the spread in subjective responses was slightly less than

desired.
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CHAPTER 2

THE TESTING OF OBJECTIVE MEASURES

2.1 Background

As was noted in the introduction, this research projact is essentially a
continuation of a research project funded by the Defense Communications Agency

in 1978 entitled An Analysis of Objective Measures for User Acceptance of

Vz,ce Communications Systems [2.1]). The goal of the original work was to study

the viability of using relatively simple, objectively computshle measures for

estimating the results of subjective speech quality tests. As part of the
original research, a statistical technique for mcasuring the expected
performance of objective speech quality measures was designed, implemented, and
tested [2.1]

Much of the effort in the original research program was directed towards
the goal of quantitatively evaluating the performance of many of the
(relatively) simple objective quality measures which had been previously
proposed and used in speech processing. The original study involved over
40,000 correlation analyses based on over 2000 separate objective specech
quality measures. Most of these objective measures were paramctric variations
of compactly computable fidelity measures. The major :ccomplishment of this
carly work was that it gave for the first time a decgree of quantitative insight
into the way in which many objcctive mecasures performed relative to onc anothcr
as well as to subjective quality estimates. This study showed, for cxamplec,
that the relatively simple log area ratio mecasure performed as well as the morc
complex log spectral distance measures [2.1]. Likcwise, the short-time

frequency-variant SNR was found to be an oulstanding mecasure for wave-form

coders |2 1] In addition, Lhc effects of frequency variant [2.2][2.3] and time

variant [2. 4] objcclive mecasurcs were investigated in some detail. All of these
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results served to provide much-needed insight into the fundamental nature of
:

perception of speech distortion and the associated foundations of specch coder

acceptability.

In another sense, however, the first study generated more questions than
it answered. A basic feature of the approach used in both the current and
original research programs is that the experimental procedure rcquires immcnsc
amounts of data reduction and data storage. This is a resuit of the very
large size of Lhe data bases involved (about 6 X 109 bytes of data storage) as
well as the very large number of objective measures which can be studied in a
single cxpcriment. Stated simply, although it takes a great dcal of cffort to
generate a single result, it takes little additional effort to gencrate many
results. Hence, the experimenter is faced with the choice of cither an
intrinsically slow iterative design procecdure or an immense data reduction task
between cexperiments. As a result, the carlier research progru.m was able to
perform an extensive study of the class of simple objective specch quality
mcasures, but it was only able to perform a limited study of the more complex
and specialized mecasures. In particular, it performed an initial study of
composite objective measures, which are single objcctive measures formed as
combinations of several other objective mcasures, and parametric objeclive
mecasurcs, which scck Lo estimate the parametric subjective spcech qualilies
12 1].

An important result of the original rescarch program was thal most of the
Jimple objecctive mecasurcs currently in use, along with thecir paramectric
variations, do not perform very well when applied to a ‘'arge class of
dissimilar distorting systems. In particular, the highest correlation
cocllicient derived for a single, frequency-invariant objecctive mecasurc applied

across all distortions was in the range of .60 to .65 [2.1][2.2]|2.5]. ‘This
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level of performance is not good enough to be of great wutility for either
quality assessment or coder design. However, a few initial experiments were
performed on composite objective speech quality measures, which were formed as
weighted sums of sets of dissimilar simple objective measures. Despite the fact
that these early experiments used a broad statistical approach, which
incorporated no special insight in regard to either the nature of the data
bases or the nature of specech perception, the results were very promising. In
particular, one composite measure was tested which attained a correlation score
of .88 across the entire distortion ensemble. Because of the naturc of the
analysis procedures, however, it was not possible to interpret this result
adequately in a broad sense. For example, the measure's robustness, as well as
to what extent this measure's perfommance was due to the statistical properties
of the data bascs rather than fundamental properties of speech perception, are
not clear.

In short, two basic points emcrged from the results of the original
rescarch program. First, it scemed clear that new objcctive mecasures could be
designed whose performance substantially exceeded the performance of the
objective measures currently in use. Second, it also scemed clear that
considerable additional work would be required in order to design these new
measures. Due to the large size of the data bases involved and duc to the
computational intensity of the statistical estimation tasks, the original
resecarch had only begun the task of effectively usfng the data bases to design
new objactive speech quality measures. What was required was morec in-depth look
al the available data.

2.

The Basic Testing Procedures

The objective speech quality mcasures of interest in this study can all be
defined in terms of the model of Figure 2.2-1. In general, tLhese objective

measures are compuled from an inpul or undistorted spcech data sct, S, and an
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OBJECTIVE FIDELITY MEASURES
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FIDELITY
MEASURE

’ F(S, Sq)
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1. F(S, Sq) = F(Sq. §)

2. F(S, Sg) = 0if S = Sg
F(S. Sq) 20 if S=5q

3. F(S, 8g) < F(S, Sy) + FiSy, Sg) | R

Figure 2.2-1. System for Computing Objective Quality Measures.




output or distorted speech data set, S,. The output speech data set is formed

Q

by passing the input speech data set through the speech communications system
under test. 1t should be noted that two features of this rescarch are first,
the objective measures studied generally require both the input and output
speech data sets and, second, the tests are always performed on a actual speech
data. In particular, exactly the same speech data is always used for both the
objective and subjective speech quality measures.

For the purposes of this research, cbjective measures may be very simple,
such as the traditional signal-to-nojse ratio, or they can be very complex. A
complex measure might use such diverse quantities as a spectral or other
parametric distance between the input and output spcech data scts; objectively
computable distance measures specifically designed to predict subjective
quality for a class of distortions; objectively computable distance mecasurcs
specifically designed to predict parametric subjective quality; scmantic,
syntaclic, or phonemic information extracted from the input specech data sct; or
the characteristics of a talker’'s vocal tract or glottis. The objective
measurcs studied as part of this research program make no ecxplicit use of
semantic, syntactic, or phonemic information, but they do utilize all of the
othcr clasczes of information listed sbove. I[f an objective measure satislics
the triangle incquality and other conditions shown in Figure 2.2-1, then it is
a metric. Although metrics have many deosirable properties, an objective mecasure
nced nol be a metric to be of intcrest.

The procedure doveloped for the testing of objective specch quallity
mcasurcs {9 {ilustrated in Figurcs 2.2-2 and 2.2-3. Flgure 2.2-2 describes the
procedurc for untrained objecctive measures, while Figure 2.2-3 describes Lhe
proccedure for trained objcctive mcasures. The entire procedure is based on an

inputl  specech data set called the undistorted speech data base which in  this

study, conslists of one sct of twelve llarvard phoncmically balanced agcntcnecs,
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spoken by each of four talkers. The four talkers included a low-pitch male,
Lwo moderate-pivch males, and a moderate-pitch female. The 48 sentcnces were
filtered using a tenth order elliptic lowpass filter with a 3.2 kilohecrtz
cutof{ frequeacy, and were sampled at an eight kilohertz rate with 12-bit A-to-
D converter. This particular format was chosen so that the input specech signals
would be approximately toll quality, although the spcech samples were not
passed through a highpass filter, as would occur for true telephone spcech.
The entire undistorted speech data base contained about four minutes of speecch.
All of the sampled speech in this study was stored on magnetic media as 16-bit
integer data in digital form.

The distorted speech data base was gencrated by applying a large number of

distortion gencration (c.g., digital coding) systems to the signals in the
undistorted specch data base. The distorting systems were gencrally implemented
as [ORTRAN programs designed [for the network of minicomputers and array
processors comprising the Georgia Tech Digital Signal Processing laboratory
[sce Appendis A]. In cvery instance, grecat care was taken to synchronize the
input and output spcech signals at least on a frame-by-frame basis, and on a
samplce-bhy-sample basis whenever possible. This completely climinated the
problem of synchronizing thc undistorted and distorted spcech signals, and the
synchronization problem was not addrecssed by this rescarch. Al thec beginning
of this rescarch contrart, the distorted specech data basec contained speech
gencraled by 264 distorting systems, for a total of 4x12x264=12672 scnlcnccs,
or 14.42 hours of distorted speech. As part of this rescarch, an additional 58
distorting systems were added, bringing the total to 15456 sentences, or 17.59
hours of distorted spcech. The details of the pre-existing data basc arc
described in section 2.3, while the new spcech distortions are described in
Chap.er 3.

The third major component of the objeclive measurc lesting procedure s
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the subjective data base, which is formed by applying a subjective speech

quality measure to all the distortions in the distorted speech data basec. In

this study, the subjective test used was the Diagnostic Acceptability Measure,

or DAM, developed by William D. Vviers at the Dynastat Corporation [2.1][2.8].

This is a widely used subjective quality test of the mean opinion score varielty

in which subjects are asked to assign a number to their perception of the
quality of the speech samples under consideration, and a final system quality
score is derived from these individual quality assessments. The DAM test has
the great advantage that it not only gives isometric quality assessments, such

as perceived acceptability or perceived plcasantness, but also gives estimatces

of arametric subjective qualities as well. The latter of these include such

things as system fluttering., SF, or system lowpass, SL. In addition, the DAM

also allows subjccts to differentiate between background and foreground
distortions. Details of the DAM and the subjective data base are discussed in
section 2.4 and Chapter 3.

Two broad classes of objective speech quality mecasurcs which were

addressed as part of this study were untrained objcctive measures; and trained

objective measures. In the former, all the parameters which control the

objective measurc are fully speciflied as parl of the definition of the
objective mcasure itself. In the latter, some of the control parameters for Lhe
objective mcasures are statistically optimized using the data in the threce dala
bases.

The wuntraincd objective mcasures are tested as shown in IFigure 2.2-2.
I"irst, Lhe objective qualily mcasure is applied to all of thc distortions in
the distorted speech data base, wusing the undistorted spcech data basc as
referen o, Second, a slatistical corrclation analysis is donc belween Lhe

results from the objective mcasure and corresponding resulls from the

23
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subjective data base. The results from the statistical analysis are used as a
figure-of-merit for comparing different objecctive speech measures.

Two figurcs-of-merit have been used throughout this research program. The
first is an estimate of the correlation coefficient between the objective
qual ity measure, O(d) (where d is the index of the distortion) and the

subjective quality measure, S(d). This estimate is given by

Z (S(d)-5(d))(0(d)-0(d)))

[2 (s<a)-§(d))21"ztz (0(d)-0(d))%1*/?

This results in a minimum variance linear estimate of the subjective quantities
from the objective quantities given by
po
S(d) = S(d) + -- (0(d)-0(d)) 2.2-1

%

where gs and 36 are the estimated standard deviation for the subjective and
objective measures respectively. It would not be correct to attribute any
absolute wvalidity to this estimated correlation coefficient in reclation to
other studies. For example, since we have not randomly sampled the universe of
all coding distortions, our correlation estimates are biased by the content of
our distortion ensemble. Therelore, correlation estimates computcd in this way
are only mcaningful when comparing objective measures over exactly the same
distortion cnsemble, and such estimates should certainly not be compared
olhcrwise.

A more universal figurec-of-merit can be computed if the objective cstimalce

of the subjective data is viewed as a linear regression analysis. The desired

figurc-of-merit is the expected standard deviation of error when Lhe subjecctive
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results are estimated entirely from the objective results, given by
~ 2,,172 ~2 ~2,.,1/2
o, [E[(s-D(5]0))°1) "% = [0 (1 - p%)] 2.2-3

This estimate, which incorporates the variance of the subjective data base as
well as the correlation coefficient, is a more pleasing figure-of-merit sinpe
it can be viewed as an actual performance estimate.

The trained objective measures are tested as shown in Figure 2.2-3. The
primary difference between the trained and the untrained measures is that the
trained measures are defined using some number of wunspecif{ied parameters,
whereas untrained measures are defined with all parameters specified. Trained
objective measures are tested using the two-pass procedure of Figure 2.2-3. In
the firsl pass, the regression coefficients for the objective measure under
test are set so as to maximize the correlation between the objeclive and
subjective results. Then, in the second pass, this now fully specified
objective measure i3 tested exactly like an wuntrained measure. In this
procedure, if the data in the training set is the same as the data in the

testing set, then the figures-of-merit estimate an upper bound on the

performance of the objective measure under test. If separatec training and
testing sets are used, then the figures-of-merit form an actual performance
estimate.

2.3 The Distorted Speech Data Base

As previously discussed, the distorted speech data base is gencrated [rom

the undistorted speech data base through the application of a large number of

distorting systems. each of which is uniquely identified by its typc of L

distortion and its level of distortion. In gencral, each type of distortion

was realized with six (or sometimes tweclve) levels of distortion. Whenever
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possible, these levels were set to span the perceived range from barely

perceivable Lo moderately distorted. Table 2.3-1 summarizes the distortions

used in this research.
As can be seen from Table 2.3-1, some of distortions in the distorted data
base already existed at the beginning of this research program, while others

were generated as part of this research. The pre-existing distortions are

- described in detail in a previous DCA report [2.1], while the new distortions

are described in Chapter 3 of this report. The purpose of this section is to

briefly review the distortions which were gencrated as part of Lhe previous DCA
research program.

2.3.1 Coding Distortions

The purpose of the coding distortions was to include in the distorted
speech ensemble a reasonable cross-section of the digital coding techniques.
Those included in the original data base were chosen from among systems which
were either in use or under active development in 1978. As can be secn from
Table 2.3-1, these coding distortions can be roughly divided into two classes:
wavelform coders and vocoders. The waveform coders included six time-domain
coders (ADM, CVSD, APCM, ADPCM, and APC) and one frequency domain codcr (ATC).
The vocoders were all based on linear predictive coding t2chniques, and
included two voice excited (now more commonly call residual excited) vocoders
(VEV) and one pitch cxcited vocoder (LPC).

Among the waveform coders, two different adaptive delta modulalors were
included in the distortion ensemble: ADM and CVSD. The ADM system, which was
based on a technique proposed by Jayant [2.7] used a onc-bit memory Lo control
its quantizer adaption and one-tap lincar prediclor in which LUhe prediclor

constant was chosen to minimize the mecan squarc prediction crror at LUhe

operating bit rates across the entire input specch scl. In addition, Lhe
quantizcer atlack and deccay rates were chosen Lo be ecqual {2.1] [2.7]. The
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Coding Distortions

ADPCM

APCM

CvVsSD

ADM

APC

LPC Vaocoder

VEV

ATC-1

ATC-2

SBC
ADPCM+Noise Feedback
MP- LPC

Channel Vocoder

Controlled Distortions

Additive Noise
Low Pass Filter
High Pass Filter
Band Pass Filter
Interruption
Clipping

Center Clipping
Quantization
Echo

Frequency Variant
Controlled Distortion

Additive Color Noise

Banded Pole Distortion-1

Number of Cases

Lad
OO DHTNVNOITOOOOOOD

—
oo NCEIO®

36
78

Banded Frequency Distortion 38
Banded Pole Distortion-2 24

Table 2.3-1 Summary of Coding and Controlled Distortions in the Distorted

Data Base
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Added During Current Study

No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No
No
No
No

No
No
No
Yes
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system was operated at 8, 12, 16, 24, and 32 KBPS, and the uncoded speech was
included in this set as the sixth distortion level.

The CVSD realization used was one which had been gencrated as part of a
separate Defense Communications Research Program [2.8]. This CVSD had been
specifically optimized for tandeming with pitch excited LPC vocoders, although
no tandems were included in this study. Just as for ADM, the single predictor
cocfficient for each CVSD bit rate was set to match the statistics of the
undistorted speech ensemble. All of the CVSD systems had a minimum step size of
10 and an expansion ratio of 166 [2.1][2.8]. The CVSD was opecrated al the same
bit rates as the Jayant ADM above.

The only difference between the two adaptive PCM systems (APCM and ADPCM)
was that ADPCM used a one-tap fixed predictor (value .92) while APCM used no
predictor. Both systems used a feedback exponential quantizer adaption
technique similar to the approach used in CVSD [2.1][2.8]. both systems were
operated at bit rates of 12.7, 18.6, 22.5, 25.3, 27.6, and 29.6 Kbps.

The Adaptive Predictive Coder [2.9] simulated in this study used a tentLh
order, time varying, linear predictor which was updated every fiftecn msec. The
LPC coefflicients were generated using the autocorrelation method ([2.10], and
were quantized using inverse sine quantization [2.11]. The residual encoder was
of the adaplive feed forward type, and uscd a three level quantizer. ‘The APC
was operated at rates of 13.3, 13.9, 14.5, 15.2, and 15.8 Kbps. ‘The sixth
distortion level used unquantized (32-bit floating poinl) LPC coeflicicnts.

The adaptive transform coder (ATC), was, by modern standards, a relatively
primitive transform coder. In particular, it was based on thec original work by
Zelinski and Noll [2.12] but used an IPC based spectral estimation procedurc
to assign the bits to its different channels {2.1]). This is somewhal similar to
the technique later used by Tribolet and Crochicrc [2.13], but withoul ‘their

pitch utilization technique. The IPC cocfficicnts were also quantized, and the
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transform coder was operated at rates of 20, 16, 12, 11, 9.8, and B Kbps.

Both of the so called voice excited vocoders (VEV) were really residual
excited vocoders where only the lower frequencies of the residual signal were
retained in the transmitted signal. At the synthesizer, the high frequencices in
the excitation signal were regenerated using a hard-limiting operation and an
additional tenth order LPC whitening filter. Like the APC and the pitch excited
LPC vocoder, the VEV's used an inverse sine quantizer for the LPC cocflicients.
The adaptive quantizer for the decimated residual signal was of the feed-
forward type, and the fundamental difference between the two VEY systems was in
the rate at which the residual signal was transmitted; 5615 and 7400 bps,
respeclively. The first YEV operated at ratcs of 9.5, 8.8, 8.1, 7.5, 6.9, and
6.8 Kbps, while the second VEV operated at rates of 11.3, 10.6, 9.9 9.3, 8.7,
and 8.4 Kbps.

The pitch excited LPC vocoder also used an inverse sine quanlization
proccdure for the LPC coeflicients, and a differential cncoder for the pitch
and gain information. The pitch detector used was of the homomorphic type,
although some pitch period and voicing errors were manually corrected. This was
an intentional attempt to forcc the primary distortion in the coder Lo be [rom
the vocal tract representation and not from pitch errors. The LIPC vocoder uscd
a fifteen msec frame interval, and operated at data rates of 1.8, 2.4, 3.0,
4.7.and 4.3 Kbps. The sixth distortion level used unquantized (32-bilL floating
point) LPC coellicients.

2.3.2 Contlrolled Distortions

A large portion of the distortions gencraled in the original rescarch
program were not explicit coding distortions, but were controlled distortions.
llach of these distortions were included for one of two reasons. [Bilner they

were considerced to be examples of specific types of subjectively relevont
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distortions, or they were considered to be a type of distortion which does
occur in coding systems, but which does not occur in isolation.
There were fundamentally two classes of controlled distortions in the

initial distorted speecch data base: simple distortions; and frequency variant

distortions. The [frequency variant distortions were included for Ltwo main
reasons. First, they could be used to meusure the rclative importance of
different types of distortions when they are applied in different frequency
bands. Second, frequency variant controlled distortions offer an environment in
which frcquency variant objective measures could be expected to be rclatively
uncorrclated between frequency bands.

Table 2.3-1 give a summary ol the controlled distortions wused in Lhe
original study. The simple controlled distortions included additive noise,
lowpass filtering. highpass filtering, bandpass filtering, izterruption,
clipping, center clipping, quantization, and echo. The frequency variant
distortions included additive colored noise, banded pole distortion, and bandced
frequency distortion.

Most of the simple controlled distortions can be described in only a few
words. The additive noise, for example, was white and Gaussian, and the
rcsulting waveforms had SNR's of 30, 24, 18, 12, 6, ¢.d 0 dB. Likewise, both
the highpass and lowpass filtering distortions had cutoff frequencies of 400,
800, 1300, 1900, 2600, and 3400 llertz. The bandpass lilters had passbands of
0-400. 400-800, B00-1300, 1300-1900, 1900-2600, and 2600-3400 llertz. 1L should
be noted here that all of the bandpass distortions and some of the lowpass and
highpass distortions werc quite severe, and were unique in that regard.

The intecrruption distortions werc implemented by multiplying the input

spcech  signals by periodic waveferms which alternated between the values one

and zero. Two different periods were used for these signals: the long period,
which wag 120 mgec: and the short period. which was 37.5 mscc. 'The level of
30
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distortion for interruption was varied by changing the duty cycle of the ﬁkf
periodic waveforms. AN
Both of the clipping distortions were implemented using a threshold at

;: which the waveform was appropriately clipped. In terms of a percentage of the

ﬁ available dynamic range of the input speech signals, these were given by 15%,

7.6%, 3.8%, 3.05%, 1.53%. and .76% for clipping, and by 7.6%, 3.8%, 1.9%, .76%,

38%, and .19% [or center clipping.

i The quantization distortion was implemented as a fixed, linear PCM system 7 ,!
which used 64, 48, 32, 24, 16, and 12 levels per sample. This corresponded to

bit rates of 4B, 44.7, 40, 36.7, 32, and 28.7 Kbps, respectively. Finally, the

‘i echo distortion was formed by adding a delayed version of the input spccch'
signal back to itself. The delays used were 1.25, 8.25, 12.5, 25, 62.5, and 125
msec. -
l The original study included a total of three types of (frequency variant if:i
distortions. The first, additive colored noise, was designed to approximate

wavelorm coder distortions in a frequency variant way. The second, banded pole

distortion, was designed to approximate distortions typical of vocal tract {

<

modeling vocoders and APC’'s in a frequency variant way. Finally, banded QQZE

frequency distorlion was designed to approximate the distortions found in AlC's

Wl LT

and adaptive subband coders in a frequency variant way. All of the [frequency _}
variant distortions operated in six frequency bands. The band limils uscd were

0-400, 400-800, 800-1300, 1300-1800, 1900-2600, and 2600-3400 llertz.

-| The additive colored noisc was formed by first bandlimiting whitc Gaussian - 1i
% noise, and then adding the resulting signal to the original specech signals. In

all, six different additive colored noisc digtortions were included, onec for
| . cach of the frequency bands listed above. Using six distortion lcvels per ;,:!
% distortion type resulted in 36 scparate distorling systems.
. 31 q
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The banded pole distortion was rcalized in four steps. First, an LPC
analysis was pecrformed, and a residual signal generated. Second, the LPC
polynomials were factored and the pole locations were perturbed within one of
the {frequency bands. Third, the LPC coefficients were regenerated by
multiplying together the individual perturbed poles. Finally, a distorted
speech signal was generated by passing the residual signal through the
regenerated LFC filter. The entire procedure is described in detail in Chapter
3 of tuis report. The pole perturbations were performed in both the radial and
angular directions for all six frequency bands. These, plus two full-band
distortions, resulted in a total of 78 separate distortions.

The banded {requency distortion was based on a short-Lime Fouricer
transform (STFT) representation for the speech signal. Fundamentally, the
banded frequency distortion added noise to the STFT of the speech signal in
bands. The noise was white and Gaussian, and was always added in phase with the
original signal. This mcans that the noise was added to the magnitude of the
STFT while leaving the angle undisturbed. Once again, the six frequency bands
combined with six distortion levels resulted in 38 separatlc distortions.

2.4 The Subjective Data Base

The emphasis in this research has always been on highly intelligible
coding techniques for wuse in toll quality applications. For this class of
systems, context frce intelligibility tests, such as the DRT and the MRT, arc
not particularly effective. This 1is because these high quality systems
gencrally crowd the high end of the intelligibility scale, and hence arc nol
well resolved by intelligibility alone. In addition, for high quality systemsy,
it is gencrally acknowledged that user acceptance depends on faclors olther Lhan
intel ligibility. 'The idcal type of test for this class of systems 1s somec (orm

of communicuability test [2.16] in which a uscr's performance is mecasured on

some complex or difficult task which ulilizes the speech coding system
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directly. Unfortunately, communicability tests are not reasonable for this
. ) . research for two reasons. First, such tests are intrinsically expcnsive, and

;: the cost of generating the large subjective data bases required here would be

prohibitive. Second, in order to perform such tests, real-time rcalizations
i for the distorting systems arc required, which would also bo prohibitively
expensive.

The only reasonable compromisc approach left is to use a subjective

l preference tcsl of the mean opinion score type. In such tests, subjcets are

asked to rate speech material on a subjective scale, ond the distorting

systom's acceptabilily is estimated from Lhese ratings. Subjective preference
¢ tests have the advantage that they are much less expensive to administer than
communicability tests and they do not rcquire real-time realiza.ions for Lhe
specch distortion syatcms. Such tests have the disadvantage that they must
. deal with the subtle nature of subjective preferences and they may require Lhe
' use of a large number of subjccts In order Lo incrcase the test's resolving
- power to an acceptable level.
i The subjective preference test chosen for this work was the Diugnostic
) Acceplability Measure (DAM) developed by the Dynastat Corporation. This

particular test was chosen for sceveral rcasons. First, it is a very carcfully

-
. ".‘1
i d

) concelved and designed measure which has beon widely used and verificd.
Sccond, sinco it is a widely uscd tes', its results arc accepted and understond
by a large number of pcoplec. Third, and most important for this rescarch, the

¢ DAM is a very finec-grained test which mcasures not only such isometric

subjcctive quantities as acceptabillty, but a large number of puarametric

quantitics ay well. This, in effecct, gencrales u fcalure sct which formy o
‘ , [inc-grained perceptual signalure for cach distortion. As will become obvious

from the experimental resulls, without Lhe information provided by Lhosc
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parametric measures, the design of high-performance objective speech quality
measures would be very difficult.

All of the Diagnostic Acceptability Measurecs gencrated as part of both the
previous research program and this rescarch program were administered by the
Dynastat Corporation under subcontract to Georgia Tech.

As with most mecan-opinion subjective tcsts, the DAM requires listeners to
characterize the distorted speech in absolute, rather than relative, judgments.
However., the DAM is unique in two specific ways. First, it combines tLhe
indireect parametric approach with the more conventional isometric approach,
which, as previously noted, rescits in a much more fine-grained estimate of the
speech quality. Second., the DAM allows listcners to distinguish betwecn system
and background distortion in making their judgments.

The rating (orm used in the DAM tecst is shown in Figure 2.1-1. The
subjeccts rate the distortced speech on ten parametric system scales, scven
parametric background scales, and three isometric scales. Factor analysis was
previously used [2.1] to reduce the input data to the form of Figure 2.4-2,
The twenty original subjective scales are reduced to fourteen outpul scales:
8ix paramectric system qualivies (SF, SII, SD, Sl,, SI, and SN); four paramctiric
background qualities (UN, BB, BF, and BR); and thrce lsometric quaiilics
(Intelligibility, Ploasantuess, and Acceptability). From all thesc parumctcers,

a total Composite Acceptability (CA) is estimated.

Previous rescarch on the Paired Acceptability Rating Method (PARM) {2.15]
has shown that much of the apparcnt randomncss in user prefcrence iests s
auctually attributublc to stable differcnces in listener prefercnces. The DAM
uscs this fact to good advantage through the careful tracking ol user
performance by the use of anchors and probes. This information is then used to

improve the resolving power of the DAM Lhrough the statistical correction of
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DAM SYSTEM RATING FORM
Make 3 slesh at the approprnaste point on each scale 10 indicete
the degres to which this transmisnon sample 13 characlenzed by
the indicated Qqushity.

THE SPEECH SIGNAL
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BABBLING

Nagligible CHORTLING SLOBBERING Extrame
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IRREGULAR

Negligible SPASMODIC FITFUL Extreme
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INTERRUPTED
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DAM RATING FORM icont.)

THE BACKGROUND
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RUMBLING
Nagtiyible THUMPING THUDOING Extreme
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BUBBLING

Neghgible GURGLING PERCOLATING Extreme

THE TOTAL EFFECT
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INTELLIBIBLE

Naghgible UNDERSTANDABLE MEANINGFUL Extrems
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0 10 20 30 40 50 60 70 80 980 100
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Figure 2.4-1. DAM Rating Form.
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Figure 2.4-2. STRUCTURE OF THE DAM

Signal Quality Measures

SF 1,7 Fluttering Amplitude-

Bubbling Modulated Speech i
SH 3.5 Distant Highpassed DR
Thin Speech RS
SD 4,14 Rasping Peak Clipped A
Crackling Speech, Quantized L
Speech .
SL 2 Muffled Lowpassed
Smothered Speech o
Si 8,10 rregular Interrupted L
Interrupted Speech -
SN 0 Nasal Bandpassed Speech -
Whining Vocoded Speech
Background Quality Measures b
8N 11,13 Hissing Guassian Noise
Rushing
BB 15 Buzzing 60-120 Hz Hum o
Humming _—
BF 12,17 Chirping Errors in narrow
Bubbling band systems .
BR 16 Rumbling Low frequency ;
Thumping noise n
Total Quality Measures
Rating Represantative Ky
Quality Scales Used Descriptors Exemplars S
Intelligibility 13 Intelligible Undegraded Speech B
Pleasantness 19 Pleasant Undegraded Speech
Acceptability 20 Acceptable Undergraded Speech
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user responses. The total DAM output for a single type of distortion is
illustrated in Figure 2.4-3.

At the beginning of this research program, the subjective speech data base
contained the complete DAM results for the 10568 talker-distortion combinations
in the initial distorted speech data base [2.1]. As the result of this
research, an additional 232 combinations were added. A fairly detailed
discussion of the initial subjective data base was included in the previous
research report, and the interested reader is rcferred there for detailed
information [2.1].

On the whole, it is a fair statement that the original subjective data
base met its design goals. That is to say that it excited the appropriate
range of perceived distortions, it excited all of the various paramctric
scales, and it represented a rcasonable ensemble of coding distortions for the
time at which it was designed (1978). There were a few specific cxceptions to
this statement, however. For example, a few of Lhe controlled distortions
could be characterized as sevcre rather than modcrate. These included most of
the bandpass distortions and somec of the highpass and lowpass distortions. In
addition, although the banded pole distortion generated subjective scores in
the correct range, the spread of the distortion levels was nol recally wide
cnough. This result will be discussed more fully in Chapter 3. Many of the
detailed fecatures of the subjective data basc will also be discuspsed in Chapter

4, Chapter O and Chapter 6.
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CHAPTER 3

NEW SPEECH DISTORTIONS

The purpose of this chapter is to describe the new coding distortions

which were added to the distorted speech data base as part of this research

program. As discussed in the previous chapter, the distorted speech data base
is a major component in the procedure for designing and testing the new objec-
tive speech quality measures. In general, this data base is formed by
applying coding and controlled distortions to all of the sentences in the

undistorted 3speech data base. The undistorted speech data base contains a

total of four sets of twelve sentences, where the sentences were all drawn (rom
a set of phonemically balanced sentences. Since the emphasis in this study was
on communications systems which, at a minimum, come close to achieving toll
quality, the wundistorted sentence sets were digitized at the toll quality
standerd. In other words, the sentences were all band-limited to 3.2 kilohertz,
sampled at eight kiiohertz, and quantized to twelve bits (linear) resolution.
In addition, the timing of the sentences within the sentence scts was
constrained so that the distorted speech could be used directly as input for
the Diagnostic Acceptability Measure (see Chapter 2 for more details). Hence,
both the subjective qualitly estimates and the objective quality estimates in
the study were always performed on exactly the same specech data.

All of the distorting systems generated as part of this study werc
implemented as programs (usuaily in FORTRAN) on the network of general purposc
computers and array processors which forms the Georgia Tech Digital Signal
Processing Laboratory [Appendix A]. As was discussed in Chapter 2, the
distorting systems werc implemented so as to maintain cither sample-level or
frame-level synchronization between the undistorted input spcech and the

distorted output speech. Hence, the problem of synchronizing the distorted and
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. undistorted speech was entirely avoided, and that problem was not addressed as

part of this research. Both the distorted and undistorted speech sentence
5 sets were always stored &s sixteen bit integer data in disk or tape files.

The original distorted speech data base which was available at the

beginning of this research effort [3.1] was described Section 2.3. In all, this

data base included 264 distorting systems applied to twelve sentences for each

of four talkers, for a total of 4 X 12 X 264 = 12672 sentences. The sentences
are always presented at exactly 4.098 second intervals, resulting in a total
I distorted speech data base of 14.418 hours of distorted speech.

Fundamentally, the distorted speech data base forms the ensemble of
distortions over which the statistical estimations used in the design and
testing of the objective speech quality measures are performed (sce Chapter 2
for more detailsg). In an ideal statistical sense, these distortions should be
a randomly selected sample from the set of all coding distortions. This, of
I course, 1S a meaningless statement for all practical applications, since

clearly there exists no reasonable procedures for approaching this ideal. What
was done instcad was to design a distortion ensemble which is representative of

the particular communications environments of interest.

N OF AN

The distortion e¢nsemble in the original study was generated to conform to
several specific design criteria. First, since the interest of the Defense
Communications Agency is primarily in medium-to-high quality spcech com-
munications systems, all of the distortions were designed to span thc

perceptual range from barely perceivable to modecrately distortced. In

particular, the distortions included primarily systems of high intclligibilily
whose quality differences arc moslL appropriatecly measured by mean-opinion
speech quality tests such as the DAM. Second, since the final goal has always

been to f{ind objective speech quality measures to be used in conjunction with
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speech coding systems, a number of coding systems were included in the
distortion ensemble. In the original distorted speech data base, these were
primarily representatives of the speech coding systems of interest in the 1874
time frame (see Table 2.3-1). Finally, since it is obvious that in order to
design good objective speech quality measures, the fundamental mechanisms of
speech perception must be addressed, a number of wide-band and frequency-
variant controlled distortions were also included. For more dctailed
descriptions of all these distortions, the reader is referred to the previous
DCA repcrt (DA100-78-C-0003) [3.1] and to [3.2-3.13].

It is important to understand that, from a statistical viewpoint, all of
the estimates performed wusing the distortion ensemble are biased by the
procedures used in choosing the representative distortions. Stated another way,
all of the results of this research must be viewed as estimates of the

performance of the objective speech qualily measures when operating over the

distortion universe which is represented by the distortion ensemble. Hence,

the validity of the results are fundamentally limited by the choice of
distortions. By any measure, the data bases involved in this study arec large
(probably the largest available anywhere), and their associated statistical
resolving power is correspondingly high. Nevertheless, they are still not
nearly large enough to support a claim of universal validity.

The purpose of this chapter is to describe in detail the augmentations to
the distorted speech data base which were performed as part of this rescarch
project. These additions were motivated by two problems with the existing data
base. First, the results of the DAM tests which were performed as part of the
original study indicated some deficiencies with certain of the frequency
variant controlled distortions, specifically with the Banded Pole Distortions.
Second, since 1978 a number of new and importart speech coding techniques have

been introduced, and these new coding distortions needed to be included in the
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distorted speech data base in order to maintain the validity of the ensemble.

3.1 Banded Pole Distortion

Over the past decade, linear predictive analysis as become one of the

dominant techniques in speech coding. This technique has been used in many
different coding systems operating at many different bit rates. These coding
systems include the pitch-excited LPC vocoder , the vector-qQuantized pitch-

excited LPC vocoder, the residual-excited LPC vocoder, the Adaptive Predictive
Coder, the Multi-pulse excited LPC vocoder, the Adaptive Transform Coder, and
many more. All of these systems have the common feature that, as part of the
speech coding procedure, they quantize and transmit frames of LPC coefficients
in some form. In all systems where this is done, this quantization causes
distortion and is perceived as distortion by listeners.

Because the quantization of LPC coefficients is such a common feature in
modern speech coding systems, it is clear that understanding how to correctly
predict subjective responses to this ciass of distortion must be one of the
primary goals of this research. The problem is that the relation between LPC
quantization distortion and human percepiion is not a simple one. LPC
quantization techniques generally quantize some transformed parameter set
derivable from the LPC feedback coefficients, such as the inverse-sine
transformed PARCOR coefficients, the log area ratios, or the linc spcctral
pairs. Such distortions are nct frequency localized and are genecrally spread
over the entire frequency range of the signal. thman hearing, on the other
hand, is a frequency variant phenomena and responds primarily to frequency-
localized and time-localized events. When viewed in the frequency dumain, LPC
quantization has the effect on moving the roots of the LPC polynomial, and
hence the poles of the LPC vocal tract transfer function, in both bandwidth and

frequency. Small variations in frequency, though easily perceivable, have
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little impact on the level of perceived distortion. Bandwidth var.ations,
however, can have dramatic perceptual effects. Bandwidths which are too narrow
cause clearly perceivable 'chirps, whi!. bandwidths which are too large cause
the speech to sound ‘muffled.

In actual coding systems, the LPC coefficient quantization distortions
always encompass the entire frequency range and always occur in conjunction
with other classes of distortion as well. If the perceptual effects of this
distortion are to be well understood, then controlled distortions need to be
generated which present the LPC quantization distortion in isolation and in a

frequency variant way. In the previous DCA research, the distorting system

shown in Figure 3.1-1 was used to generate the pole distortion. In this systcm,
the speech is first pre-emphasized using a second order filter, and then a
framed LPC analysis is performed. The results of the LPC analysis is then used
to inverse filter the original 3speech, giving an approximation of the glottal
wave excitation [3.3}.

Following the inverse filtering operation, the poles of the vocal tract
function are then found by factoring the LPC polynomial. Then the banded pole
distortion is applied by first identifying all the poles within a fixed
frequency range, and then moving the poles slightly i:. either frecquency or
bandwidth, or both. This 'jittering' of the poles is controlled by two uniform
random number generators. The 'frequency range,’ FR, factor gives thc range of
frequency, in Hertz, in which the poles are allowed to move. The ‘bandwidth

factor,’ BF, is a multiplicative factor controlling the bandwidth motion by
distorted radius = (undistorted radius)[1+(BF)r] 3.1-)

where r is a uniform random number which ranges betwecen plus onc and minus onc.
Once the pole locations are distorted, they are rccombined tr “n a ncw sct of

LPC cocfficicnts, a'(k). These coefficients are then usca ~plement a new
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vocal tract filter to create the distorted speech. The pole distortions
included in the original distortion ensemble are summarized in Table 3.1-1 and
the results of the DAM analysis of these distortions are shown in Figures 3.1-
2M, 3.1-2F, 3.1-3M, and 3.1-3F.

A study of the DAM results shown in Figures 3.1-2M - 3.1-3F reveals some
basic problems with the distortions used in the original study. The problenm is
that certain of the distortion classes did not exhibit an adequate variation in
perceived distortion. This 1is particularly true for the case of {requency
distortion in the ranges 200-400 Hz, 1900-2600 Hz, and 2800-3400 Hz, but is
also true for radial distortion in the range of 2800-3400 Hz. An c¢xamination
of the control parameters for the banded pole distortjon shown i{n Table 3.1-1
indicates that this is a fundamental problem, since the froquency variations
used were already very large when compared to the dimensions of the {requency
bands. In short, the bands uscd were too narrow for clearly perceivable
distortions are to be gencrated.

Based on thesc observations, a new set of banded pole distortions, based
on only four bands, was generated. As before, the bands were chosen to have
approximately equal frequency content on a MEL scale. The control parameters
for this study are shown in Table 3.1-2. Notice that in this study, the banded
polc distortions were chosen so as to exhibit both pole-frequency and pole-
bandwidth variations. The -~c3ults of the DAM tests applied to thesc
distortions will be discussed in the following section.

3.2 Effects of Banded Pole Distortions on Subjective Responses

Figures 3.2-1, 3.2-2, 3.2-3, and 3.2-4 show the cffect of ({requency
variant pole distortion for 0-420 Hz., 420-90C0 Hz., 900-1600 Hz., and 1800-3200
Hz. respectively. From these figures, it is clear that, for all frcquency
ranges, the scales which are most dramatically cffected are S (system

fluttering) and BF (background fluttering). Hence, the effect of quantizing
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Banded Pole Distortion i
Frequency Distortion

Frequency Range (Hertz) RS

S

Distortion 1 2 3 4 5 6 . »-7

Band (Hertz) . ;—-'_

~ 200-400 20 40 60 80 100 120 i

400-800 20 40 60 80 100 120 .\

800-1300 50 90 130 170 210 250 o

1300-1800 50 90 130 170 210 250 '“:

19002600 100 150 200 250 300 250 Y

2600-3400 150 200 260 300 350 400 o

e

Bandwidth Distortion fj‘:'..

. Yariation Factor '

- Distortion 1 2 J 4 S 6 -

= Band (Hertz) o, -

b o

i-.a 0-400 .025 .05 .075 A .2 .3 i

- 400-800 . 025 .05 .075 .1 .2 .3 e

L 800-1300 . 025 .05 .075 A .2 .3

3 1300- 1900 .025 .05 .075 1D .2 .3 .
1 1800- 2600 025 .05 .075 . 2 .3 -
3 26800- 3400 .025 .05 .075 1 .2 .3 :

-

Table 3.1-1 Summary of Control Parameters for the Banded Pole Distortions '-,_;::‘f

Implemented as Fart of the Original Research ‘

5-;1‘:

L4,

E .

Banded Pole Distortion :Z.{.'."

Frequency Range (Hertz) Yariation Factor T

e

Distortion 1 2 3 4 5 8 1 2 3 4 b5 6 o

Band (Hertz) ‘ .

50-420 10 20 30 40 S0 55 .01 .02 .04 .08 .16 .32 "

420-800 20 40 60 80 100 120 .01 .02 .04 .08 .18 .32 . :?,

900- 1600 25 &0 75 100 125 150 .01 .02 .04 .08 .18 .32 e

1600- 3200 80 160 240 320 400 500 .01 .02 .04 .08 .16 .32 -

Table 3.1-2 Summary of Control Parameters for the Banded Pole Distortions
‘ Implemented as Part of the Current Resecarch
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the pole locations for LPC analysis can best be characterized as 'flut;ering'
and ‘chirping’. It is also clear that all frequency bands result in an
acceptably wide range of perceived distortions. Hence, the new pole
distortions met their fundamental! design criteria.

3.3 Coding Distortions

As previously noted, the basic reason for the introduction of new
coding distortions into the distorted speech data base was to add to the
distortion ensemble examples of classes of coding distortions which have become
common since the original definition of the data bases in 19798. In all, there
were five new classes of coding distortions intrcduced, resulting in a totai of
34 new distortions and extending to 94 the total number of coding distortions
in the distorted speech data base. As always, the new coding disturtions che
simulated using general purpose computers, and were designed to haxé zero phase
reconstruction whenever possible. If this was not possible, they were designed
to have at least frame-by-frame synchronization with the undistorted specch.

3.3.1 Multi-Pulse Linear Predictive Coder

Since its introduction in 1981 [3.14], the Multi-pulse Linear Predictive
Coder (MPLPC) has been one of the most extensively reported and studied [3.15-
3.17]] techniques for medium-to-low bit rate speech coding. For nearly a
decade before 1981, researchers had been searching for ways to improve the
quality of speech at the bit rates between the medium-bit-rate waveform coders
(down to about 16 Kbps) and the low-bit-rate pitch-excited vocoders (down to
about 2.4 Kbps), but little progress had been made. MPLPC is the first
technique to show rcal promise in this area.

MPLPC is really a form of residual excited vocoder where the excitation
information is generated and encoded in a special way. MPLPC derives its

advantage from extcnsive utilization of the speech modecl and the LIPC-estimated

vocal tract transfer function. A block diagram of the MPLI’C vocoder used in
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this study is shown in Figure 3.3.1-1. In this system, the speech signal s
first divided into two channels: the analysis channel, in which the LPC
analysis and coding is performed; and the residual channel, in which the
residual coding is performed. In the analysis channel, the first step is to
apply a pre-emphasis filter of the form

-1 -2

H(z) = l-blz -bzz 3.3.1-1

where the coefficients of the filtér. b1 and bz. rhave been set so as to
estimate the spectral shaping 2ffect of the glottal pulse [3.4]. The output
from this filter is then used as input to an autocorrelation LPC analysis
routine which performs a tenth order LPC analysis and gives an estimated vocal

tract filter of the form

1
V(z) - 3.3.1-2

10
-n
1- 2 a_z
n
n=1

This 10th order transfer function is then both coded for transmission and, in a
separate operation, corrected to include the spectral shaping effects of the

pre-emphasis filter, giving the 12th order transfer function

In the residual channel, the original sampled specch signal is first

passed through an all-pass filter whose transfer function is given by
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it .

b2 z %+b 2z %41 3.3.1-4

-1 -2
1+blz +bzz

A(z) -

This filter has the effect of approximately correcting for the non-minimum
phase components of the original speech signal [3.4], which in turn, has the
effect of both making the speech signal more peaky in appearance and also
making the vocal tract model, V'(z), more nearly correct in a phase (as well
as in a spectral) sense.

ke heart of the MPLPC is the Multi-Pulse Estimation and Encoding

functions shown in the analysis channel in Figure 3.3.1-1. This function uses
the phase corrected speech signal, s'(n), and the spectrally corrected vocal

tract parameters, a', ... a

) in an iterative procedure to choosc a set of

12'
residual pulses to te coded and transmitted. The entire procedure is performed
in frames (60 samples per frame in this study) of which only a smal: number of
pulses are kept for transmission (2 to 10 pulses in this study). Because of
the sparse nature of the multi-pulse signal, run-length coding can be used to
reduce the bit rate in the MPLPC residual signal.

The iterative procedure for (finding the multi-pulse locations and

magnitudes used in this study can be summarized as follows. First, thc ordinary

residual signal [eo(n)] is formed, giving

12
eo(n)= s'(n) - 2 a’'(k) s'(n-k) 3.3.1-5
k=1

Next, the modified vocal tract impulse response, hw\u). is computed as
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h_(n)=0 n=0 3.3.1-6(a)
w

12
h (n) = ) &’ (l)y*n, (n-k) 1<n < M1 3.3.1-6(b)
k=1

where vy and M are control parameters of the coder. Then the modified vocal

tract autocorrelation filter, rw(n). is computed as

r'(n) = hw(n) o h'(-n) 3.3.1-7

Using rw(n) and hw(n). the pulse locations and pulse amplitudes are computed 1n
the following iterative procedure. First, the pulse index, p, is set to zero (

p <-- 0 ) and fp(n) i3 computed as
fp(n)= eo(n) . r'(n) 3.3.1-8

Then the time index which maximizes Ilp(n)l is found giving NO' the location of
the pth pulse (for p=0 first). The approximate amplitude of the pth pulse s

then computed as

A = f (N) 3.3.1-9
P P

M-1
) R
m=0

Once Ap is computed, the pulse index is incremented (p --> p+1), and then fp(n)

is computed as
f (n) = ¢ n)-A r_(n-N 3.3.1-10
p( ) p-l( ) P w( p)

The above steps are repeated until the desired number of pulse locations,
NO"'NP-I' are [found. The pulsc amplitudes found by this procedurc are sub-

optimal, and once the pulse locations are found, a ncw set of P amplitudes can
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be found ‘n one step [3.14]. gt

In this study, the intent was to generate a class of distortions which T

e
a ey,

were typical of MPLPC, and not specifically to implement any particular
algorithm. Hence, no artual run-length coding was performed and no precise bit
rates were computed. In addition, the unquantized LPC vocal tract parameters
were used to gencr te the synthetic speech.

Another (feature of the MPLPC is that once an estimate of the multi-pulse ;fﬁ
residual signal is known, it is possible to use that signal to obtain an
improved estimate of the LPC vocal tract parameters. In this study, three RN
different pulse rates (2/80, 6/80, and 10/80) were combined with original and
improved LPC vocal tract parameters in order to form the six members of the
MPLPC distortion sets.

3.3.2 Adaptive Transform Coder

One of the more successful methods for {requency domain speech coding is
the adaptive transform coder (ATC). The basic concept on which the ATC is
based involves encoding a spectral representation of the speech raiher than the
time domain waveform. The steps involved in the coding are: 1) windowing and
transforming a segment of speech, 2) producing a model of the spectrum from LPC
analysis and pitch detection, 3) dynamically allocating a predetermined number ek
of bits among the transform coefficients using the model spectrum, and 4) ﬁf}
adaptively quantizing the coefficients to the number of bits allocated. The
decoder requires both the quantized transform coefficients and the quantized
LPC parameters of the model spectrum in order to resynthesize a speech ' ;?
waveform. From these parameters, the bit allocations and adaptation paramelers
which were used in the quantizers can be computed. Kesynthesis rcsults from ?jf
decoding of the transform, inverse transformaticn, and overlap-add combination
vl adjacent segments.

OQur particular procedure follows <closcly with that of Tribolet and
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Crochiere [3.18] with some modifications. The transform used in our analysis

was the Discrete-Cosine-Transform (DCT) which is defined by:

M-1
v (k) = 2 v(n)e(k)cos[ (2n+1)mk/2H] . 3.3 2-1
n=0
The inverse DCT is defined as
1 M-1
v(n) = - }vc(k)c(k)coa[(ann)nk/au], 3.3.2-2
Moo
where in both formulas:
k=0,1, ,M-1 and,

0 3.5.2-3
1

Note that this transform is real, and involves computation of M equally spaced
frequency components from zero to the sampling frequency. The reasons for this
particular transform's use include the fact that its coefficients are always
real, it is relatively simple to compute (efficient algorithms involving FFT's
exist), and it is purported to be immune to windowing effects when quantized.
For the balance of the discussion, we will assume an 8BkHz sampling rate
for the digitized speech, since this was the case for all of the speech
materials used in this study. The windows used for the analysis were 258 point
trapezoids with a value of one for the center 240 points, and tapering lincarly
to zero on both sides. Adjacent segments were overlapped by 18 points, making
an overall rate of onc frame every 30 ms. A DCT of length 256 was applicd for

each scgment.
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In addition to the DCT analysis, another analysis was performed

it

.. independently on data for spectrum modeling. A twelfth order LPC analysis

T

using a 258 point windows was performed every 30 msec. Pitch detection was

AN

performed by an interactive, semi-automatic procedure to so as to mirnimize the

probability of pitch and voicing error. These two components give rise to a

smooth spectrum, of(k). and a pitch spectrum, Up(k), which are combined to a

r IR I
.‘n.'.' Lo

model spectrum as(k)=af(k)op(k). The estimate G,(k) was computed wusing a

-

discrete Fourier transform (DFT) for the quantized linear prediction model over

AP

the first halfl of the unit circle. The pitch spectrum, op(k). DFT of is

computed by windowing and then taking the

v

v

i p(n) = ) ()8 (n-nlL) 3.3.2-4
m=0

g

where L is the pitch and G is the ratio of the Lth lag autocorrelation term of
the speech segment to the zeroth lag.

The bit assignment was a function of a weighted version of the log of
Us(k). This form of the bit assignment was specifically chosen so as to hide
some of the quantization noise under the high energy spectral peaks. The

algorithm was iterative and attempted to allocate B bits over M points,

ERAARE “FAiAnnce” *SAEN

according to the formula

.

\_}.’1.;(:_'/;_' ARG

b(k) = max 0. min[int[logy(o (k) ~~*°(k)) + 8], Nmax]j  3.3.2-5

1
[
Aol

where b(x) 13 the number of bits assigned to transform coefficient Vc(k).

int{a] truncaltes a to an integer, and max[a,b] and min[a,b] take the maximum T

-
» et
t .l .
i et
PRI .
el
i 2l

and minimum respcectively of the two arguments, Nmax is the maximum number of

bits allowed for any one coefficient, and § is the parameter which is

|

iteratively adjusted to make
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-l

-1
) b =B 3.3.2-6
k=0

The purameters Nmax and B depend on the desired bit rate for the coding.

It is valid to assume that Vc(k) is a zero mean Gaussian random variable
(given only os(k) for estimation purposes) with variance equal to Us(k). The
quant ization procedure, therefore, consists of normalizing Vc(k) by as(k) and
then applying a non-uniform b(k)-bit quantizer optimized for a Gaussian process
of unit variance. Parameters for the quantizer were taken from Max [3.19].

In all, N bits per segment are al!lowed for an (Nx8000)/240=Nx33.3 bits per
second rate. Of these, B Lits are 'main information’ and N-B bits are ‘side
information, ' which include LPC reflection coefficients, LPC gain, pitch gain
(G from equation (3.3.2-5), and pitch.

Resynthesis involves identical computation of b(k), os(k), Vf(k). and
Gp(k). which are used to calculate the quantized versions of Vc(k) from the
main information. An inverse DCT is then computed, and an overlap add is
performed with the previous segment. The parameters use to control the
adaptive transform coder are summarized in Table 3.3.2-1.

3.3.3 Subband Coder

In recent years, subband coders for digital speech coding at medium bit
rates have been widely studies in thc literature [3.20][3.21]. In the basic

subband coding procedure (Figure 3.3.3-1), the speech is first split into

frequency bands using a bank of bandpass filters. The individual bandpass
signals are then decimated and encoded for transmission. At the receiver, the
channel signals are decoded, interpolated, and added together to form the
received signal. The subband coder derives its quality ad-antage by limiting

the quantization noise from the encoding/decoding operation largely to the band
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i

It

Bit

Rate Number Bits In
Side Information
Per Frame
16 kb/s 51
12 kb/s 414
9.6 kb/s 44
8 kb/s 44
6 kb/s 44
4.8 kb/s 44

Coding Distortion

Table 3.3.2-1 Control Parameters for the Adaptive Transform Coder (ATC-2)
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Maximum Number
of Bits Per
Coefficient
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Number of Bits
For Transform

Quantization

445
318
244
204
136

100
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C!' in which it is generated, thereby taking advantage of known properties of aural i}
2 perception [3.22]. ) ;2
The basic component of octave-band tree-structured subband coders is the :;f

two-band analysis/reconstruction system shown in Figure 3.3.3-2. In this - ' ;;

system, the analysis is performed by the two frequency selective filters, ig:

Ho(ejm) and Hl(ejm). which are nominally a half-band lowpass and a half-band :;

highpass filter respectively. To preserve the system sampling rate, both :E

channels are critically decimated at a rate of two-to-one, resulting in the two ﬁ?

sub-sampled signals, Ya(ejw) and Yl(ejw), given by ?g

Yo (el = (1/2)[Ho(e""’2)X(e"’”z)mo(-e”"’z)x(-e’“”z)] 3.3.3-1a

Y (/) = (1/2)[H, (e1)x(eI 2y (-1 2)x(- 7% 3.3.3-1b 5

KX

In the reconstruction section, the bands are recombined, giving :g

X(e®) < (1/2)[H ()15, () +H ()G, (1) 1x(e!)
+(1/2)[HO(-ejw)Go(ejw)M-ll(-ejw)Gl(ejw)]X(-ejw) h‘

3.3.3-2 i

The frequency response of the two-band linear system component is contained in ig

the first term of equation 3.3.3-2, while the second term contains the

aliasing. In the classic QMF solution, the aliasing is removed by defining t..: Jf

reconstruction filters as

(2]
[=]
n
—
€
~

= Hl(-e"w) 3.3.3-3a

._0
)
€
A
'

= -HO(-e’“’) 3.3.3-3a

[IRSRIEET S

This assignment forces the aliasing to zero, and results in a total system

frequency response, C(ejw). of
‘a c(el?y = (1/2)H0(e1°’)H1(-e"")-(1/z)H1(e’“’)H0(-eJ‘°) 3334 - _l

€6
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In the conventional solution, the high-pass filter [Hl(e]w)] and low-pass

filter [Ho(e’w)] are chosen to be frequency shifted versions of each other,

i.e.
Hl(ejw)=Ho(-ejw) 3.3.3-5

For this class of analysis/reconstruction system, exact reconstruction requires

that
H&ejw) - H‘e"w) =2 3.3.3-6

A number of authors using various methods have designed FIR filters which
approximate this condition. The analysis/reconstruction systems used in this
study all were based on quadrature mirror filters design by Johnston [3.23],
and the systems were simulated as described by Barnwell [3.21]. The APCM
coders used in this study are based on work by Jayant [3.24]. The adaptive

quantizer in these systems are controlled by the dynamic steps-size A(n), given

by
A(n) = A(n-1) x Fle(n-1)] 3.3.3-7

where ¢(n) is the nth code word and F[ ] is a preset control function. The
control functions for the APCM coders used in this study are given in Table

3.3.3-1, while the control parameters for the individual systems are shown in

Table 3.3.3-2.

3.3.4 Channel Yocoder

The channel vocoder which vas realized was a thirty band system which
occupied the frequency range of 0-3.6 kilohertz. A block diagram for each of
the channels (analysis and synthesis ports) is given in Figure 3.3 .4-1.

The filters in both thke analysis and synthesis filter banks were all

realized wusing recursive elliptic filters implemented as a cascade of second
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APCM Coders for Subband Coding

Magnitude of Code Word [|c(n)|]

Number of Bits 0 1 2 3 4 5 6 ?

per Sample
4 .8 .9 .9 .9 1.2 1.6 2.0 2.4 o
3 a5 .9 1.4 2.0 E;;
2 .85 1.9 }

Table 3.3.3-1 Control! Function F[ ] for the APCM Coders Used in the Imple-
mentation of the Subband Ccders

Subband Coder Control Parameters ' -

W
Coder Number 1 2 3 4 5 Harmonic Bit Rate S
of Scaling e
Bands -.i
|
SUB- 1 5 a4 4 2 2z 2 No 16000 i
i SUB-2 5 3 3 2 2 2 No 14000 5
4 SUB-3 4 4 3 2 2 No 12000 g
g T
p-! SUB- 4 5 4 4 2 2 2 Yes 8000 Y
T SUB-5 5 3 3 2 2 2 Yes 7000
] SUB-6 4 4 3 2 2 Yes 6000
{J —~——
E{ Table 3.3.3-2 Control Parameters for the Six Subband Coders Implemented as .
- Part of This Study '
b
f‘ N
L
=
[
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order sections. All of the filters had an identical bandwidth of 120 Hz. The
charact<.istics of each of the filters are given in Table 3.3.4-1. Exactly the
same fijilters were used in the corresponding analysis and synthesis banks for
each channel.

The filtered speech signal xi(n) was divided into frames of N samples.
After some experimentation, N was chosen to be 215 in the final realization.
Then, for each frame, the normalized square root of the energy of the windowed

signal xi(n) is computed as

N 1/2
) Iwmx(n)) 2
y; (m) = nEl 3.3.4-1
N
2 wz(n)
n=1

where m is the frame number and n indexes through all the points in the frame.

A Hamming window function was uscd used for w(n), given by

w(n) =0.54 - 0.46 cos(lfg) 3.3.4-2
N

For the channel coding. a uniform quantizer was used for the positive
signal yi(m). In the final realizations, the numbers of bits used were
9,10,11,12,14 and 16 (unquantized version) respectively.

The pitch period estimations used for the channel vocoder were exactiy the
same as those use for the adaptive transform coder (see section 3.3.2) These
pitch period signals were genecrated using a semi-automatic pitch detecticn
program which minimized pitch and voicing errors. The pitch periods were
estimated every 120 samples {15 msec). The excitation signal, p{(n). is

generated as follows: for unvoiced sounds, a uniformly distributed white random
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Filter Bank for the Chanunel Vocoder Implementation

Filter # Low Cutof! High Cutoff Order
Frequency Frequency
(kHz) (kHz) iy
[ S
1 0 120 8
2 0.120 ,.240 12 -3
3 0.240 0.3860 12 -
4 0.360 0.480 12 :
5 0.480 0.600 12
6 0.600 0.720 12
7 0.720 0.840 12
8 0.840 0.960 12 e
9 0.960 1.080 12 -
10 1.080 1.200 12 -
11 1.200 1.320 12 s
12 1.320 1.440 12 o
13 1.440 1.560 12 E
14 1.580 1.680 12 RN
15 1.680 1.800 12 R
18 1.800 1.820 12 SRR
17 1.920 2.040 12
18 2.060 2.160 12
19 2.160 2.280 12
20 2.280 2.600 12
21 2.800 2.520 12
22 2.520 2.640 12 -
23 2.840 2.760 12
24 2.780 2.880 12
25 2.880 3.000 12 Ty
20 3.000 3.120 12 L
27 3.120 3.240 12 =
28 3.240 3.360 12 s
29 3.380 3.480 12 BNER
30 3.480 3.6800 12 R

Table 3.3.4-1 Filter Bank Characteristics for the !mplementation of the Channel
Vocoder Distortions
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R
Control Parameters for the Channel Voocder Distortion i
;

G RINIPRIRE - EEAGLAMRES PORROARY
1
1

System Number Bits Per Channel Bit Rate per Channel
(Bits/Second)

800 e

R L.-r
—
©

2 10 667 RN

3 11 733 T

% 4 12 800 " e

5 14 933

6 16 1087

.

F Table 3.3.4-2 Control Parameters for the Channel Vocoder Distortion. For this ek
Distortion, the Sampling Rate was 8 kHz., the Frame Size was 120 Lo

Samples, and the Number of Channels was Thirty.

ERsn R et ah et SR AR ahec:
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process with standard deviation GN is used; for voices sounds, a periodic
pulse train with the correct period and amplitude Gp is used. The choice of
the gains GN and Gp was critical. A ratio GP/GN=10 was found to be
appropriate.

In the receiver, the excitation p(n) is multiplied by the transmitted
gignal ti(m) to create zi(n). This signal, in turn, is filtered to generate
the channel signals, si(n). which are all summed to create the output speech
signal. The control parameters for the chunnel vocoder are summarized in Table

3.3.4-2

3.3.5 ADPCM with Noise Feedback

In this context, noise feedback refers to a ¢jass cof analysis procedures,

introduced hy Atal and Schroeder [3.25], which can be applied at the
transmitter of either an APC and ADPCM speech coding systew in order (o
systematically control the spectral shape of the coding noise generated at the
receiver. The recason for doing this is to take advantage of the aural noise
masking effect which has been studied in psychoacoustics. This effect,
conpactly stated, is that in aural perception, a strong signal souice will
tend to mask less strong noise sources which are located close to it in
frequency. Hence, it is desirable to shape the coding noise in such a way that
the noise energy is placed near the speech signal energy in the short-time
frequency domain.

The fundamentals of the noise feedback technique are illustrated in Figure
3.3.5-1. A key feature of this technique is that it is applied only at the
transmitter of APC or ADPCM systems, and the receivers which are used arc
standard, wunmodified APC or ADPCM receivers. Both APC and ADPCM c¢ncode a
residual signal, e(n), which is obtained by passing the original signal Lhrough
cither a variable (APC) or fixed (ADPCM) whitening filter. In the traditional

system, after quantization, the residual signal, E(z). is given by
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E(z) = [1-P(z)]S(z) + [1-P(2z)]A(=z) 3.3.5-1

where P(z) is the transfer function of the prediction filter, S(z) is the z-

% < A

transform of the original speech signal and A(z) is the z-transform of the

TR

'!v
b
[N
L

quantization noise signal, d(n). At the receiver, an estimate of the original
signal, S'(z). is created by passing the transmitted residual signal through

the inverse whitening filter, giving

S'(z) = E(z)/[1-P(2)] = S(z) + A(z) 3.3.5-2

Hence, in an ordiuary ADPCM or APC, the output signal is the sum of the input

signal and the quantization noise signal. Since the quantization noise is

nearly white, then the noise is distributed uniformly across the entire

[ ] :

frequency band, independent of the short-time frequency spectrum of the speech.
In a noise feedback approach (Figure 3.3.5-1), the quantization noise is

explicitly filtered separately from the speech signal, and the residual signal

can be written as

E(z) = [1-P(2)]S(z) + [1-F(z)]A(z) 3.3.5-3 !

f

giving an estimated speech signal at the receiver of 7;7_;.1

' S'(z) = E(2)/[1-P(2)] = S(z) + [1-F(2)}A(2) 3.3.5-4 ;%;h
1-P(z) e

[T |

q [

r —
[ Hence the approximately white noise signal, A(z)., is passed through the filter R
ii whose transfer function is given by [1-F(z)]/[1-P(z)]. Clearly, by varying the .j¥k
i! characteristics of F(z) on a frame-by-frame basis (since P(z) is always known 'J;
{f whether it is fixed or time-varying), it is possible to shape the noisc to any 'i:;
i; desircd shape. An important point here is that the minimum noise encrgy always in
F' occurs for no necise shaping, i.e. F(z)=P(z). Hence, the effecct ol noisc '“‘
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feedback is always both to shape the noise and to increase the overall noise
energy.
In this study., the coding system utilized was always an ADPCM coder with a

single tap fixed predictor, and the noise feedback filter was designed so that

10
1 - 2 anz-n
1-F(z = =1
1-P(z) 10
1 - 2 a ynz-n
n
n=1
where v is a control parameter, and P(z) = .92-1. The control parameters used

for this distortion are shown in Table 3.3.5-1.

3.4 Effects of Coding Distortions on Subjective Responses

3.4.1 The Effects of Multi-Pulse LPC on Subjective Responses

The effects of Multi-Pulse LPC on subjective responses are illustrated in
Figure 3.4.1-1. There are several point which should be noted here. First.
the Multi-Pulse LPC is capable of generating quite high quality systems at
relatively low bit rates. In fact, the only coding system in this study which
resulted in better quality was an ATC which operated at about twice the
equivalent bit rate of the Multi-Pulse LPC. Second, the technique of using the
estimated excitation function to improve the LPC analysis (systems 2, 4, and 6
of the MPLPC distortion) gives a consistent improvement for the lowest bit
rates (2/80) but has little impact at the higher rates. Third, the MPLPC tends
to excite a broad class of parametric distortion scales, including SF (system
fluttering), SH (system highpass), SL (system lowpass), and SD (system
distorted) as well as BF (background fluttering). However, on many of these

scales the responses are bi-modal depending on whether there are cnough pulses
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Coder

NF-1

NF-2

NF-4

NF-5

ADP-1

ADP-2

ADP-3

ADP-4

Table 3.3.5-1

Control Parameters for ADPCM with Noise Feedback

Quantizer
Levels

12

16

32

12

Coatrol Parameters for the ADPCM Systemy with and without
Noise Feedback Used in this Study

Number of
LPC Taps

78
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Figure 3.4.2-1 Diagnostic Acceptability Results for Adaptive Transform

{ Coder.
t 79

}

C e e e A g e W e
{ bl [ ‘. ? ,"- PRI L oS,

1 A . ‘ ' ’ ‘ N ‘ - . . - » .

I o L. U LT I Sl et
[l oL L L I . ' PN R r S Lo .

| KPS NI N T L T D AT AR R I
LN . - e T . . 1y T AR ALNEN]
'- Vet et B R oy e R R PR I A
PIVIENEMIRET NI, I VRS S0 T SRS Ll . O PR T

RO I BRI

NOK. IOV

N0 B R



SR PR L L O E At ST TN L AT NI AT INT, VLT ST SR I, T T T T T T T TN TR M Y TR YW WMYWETITWEELY wvvvﬁ‘\r{";'r“}“‘:\"

Y

\‘.. ““\‘;1
% SCNS
-P- . "“\5 v
1 in the residual representation to support the true pitch. If this effect is .4
= ———

corrected, most of the perceived distortion occurs on the SF and BF scales.

3.4.2 The Effects of the Adaptive Transform Coder on Subjective Responses

. The results of the subjective quality evaluation of the ATC is shown i. ’ 5
Figure 3.4.2-1. The ATC clearly lives up to its billing as a high qual ty
waveform coder for medium bit rates, with near toll quality performance at 16 N
Kbps. Like the MPLPC, the ATC excites a number of parametric quality scalcs.
Clearly, the ATC distortion is mostly perceived as SF (system fluttering) and ib}ﬁ
BF (background fluttering). However there are also non-trivial deviaticns '?19
shown on the SN (system nasal), SD (system distorted), and SL (system lowpass)
scales. The spread of subjective quality results for this distortion is

excellent, so the fundamental! design criteria as been met.

—r— e

3.4.3 The Effects of the Subband Coder on Subjective Responses

Figure 3.4.3-1 shows the results of the subband coder distortions on
subjective quality. Like all of the previous distortions, the subband coder ;h“i
distortion exhibits a good range of subjective responses. The subband coder
also exhibits a distinct bi-modal behavior for a number of parametric scales,
specifically SF (system fluttering), SN (system nasal), and BF (background v i
fluttering). This is a direct reflection of the inciusion or exclusion of time
domain harmonic scaling in the subband coding system. The basic subband coder

distortion shows up mostly on the SD (system distorted) scale, while the TDHS

excites mostly the SF (system (fluttering), SN (system nasal), and BF

bl
o
'
4
=

(background fluttering) parametric scales.

‘. 3.4.4 The Effects of the Channel Vocoder on Subjective Responses :

The subjective results for the Channel Vocoder distortion are shown in
Figure 3.4.4-1. Of all the coding distortions in this study, the channel

‘ vocoder was the least successful in generating a good range of subjective
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responses. However, the results are still adequate for use in the subjective
data base. It is clear from Figure 3.4.4-1 that most of the channel vocoder

distortion shows up on the SN (system nasal) and BN (background noisy) scales.

3.4.5 The Effects of the ADPCM with Noise Feedback on Subjective Responses

Figure 3.4.5-1 shows the results of the subjective quality tests applied
to the ADPCM-NF distortion. As can be seen from Figure 3.4.5-1, this
distortion exhibits a good range of subjective responses. Almost all ;r the
distortion shows up on the SD (system distorted) parametric scale, as is
typical of many waveform coder systems. One of the claims made for the noise
feedback approach is that for equivalent bit rate systems, noise feedback
generally results in improved quality over systems without noise feedback.
Figure 3.4.5-2 shows the results of subjective tests applied to equivalent
ADPCM systems without noise feedback for the four lowest bit rate systems.

Clearly, from these tests it appears that there is no measurable advantage to

using noise feedback.

3.5 The Effect of the New Distortions on the Correlation Analyses

Once the new distortions were incorporated into the existing data bases,
extensive tests were conducted to find the impact of the new distortions on
both the correlation coefficients computed in this study and those computed in
previous studies. The basic result of these analyses was that the correlation
coefficients computed on the old data bases and those computed on the new data
bases were very similar, and all the previously stated results were still valid

for the expanded distortion ensemble.
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CHAPTER 4

MODELING OF HUMAN HEARING FOR OBJECTIVE
SPEECH QUALITY ASSESSMENT

4.1 Background and Theory

Distortions of speech resulting from coding can only be detected if the
magnitude of the distortion is greater than the resolution of the human
auditory system. Once a distortion is perceivable, a subjective evaluation of
the degree of distortion reletes to the scaling properties of the auditory
system. (The auditory system includes both peripheral and central components.)
Qur modeling approach will not deal specifically with speech perception, but
rather, with the basic psychophysics of hearing. We will specifically restrict
ourselves to look only at differences in coded and uncoded speech and try to

quantify these differences. This approach obviously cannot address all issues,

but for the coders under consideration it should be of some merit. Due to the

lack of higher order modeling, it is expected that our models will more readily 'ﬁfii
agree with subjective results for waveform coder type distortions than more ! q
complex distortions. Some of the key issues with hearing will be frequency,

temporal, and intensity resolutions as well as their perceptual scalings.

Frequency differentiation appears to be comprised of at least two separate ST
rhenomena, one for stimuli composed of harmonically related components (pitch) S

and another for more general stimuli.

N
e T
bttt . at,

rotot
oo

Pitch perception can be accurate to within 0.3%, but is applicable on:y to

‘1
\

signals with specific periodicity. When the complex tones (stimuli composed of

multiple sinusoids) have inharmonic components, (roughly seven or morec) they

R
. BRI |

cannot be perceived individually. This is the point where the pitch detcection = e
ability of human observers becomes too c¢onfused to function. Currcnt
indications are that pitch perception is a highly central neural process which

S
must be modeled at a level much beyond the auditory periphery, and will j"!
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therefore be considered beyond the scope of our analysis.

Frequency resolution in general signals is much poorer than pitch
perception for periodic signals and is determined by other basic properties.
Most theories use the notion of critical bands which correspond to the presumed
filtering action of the auditory system. None of the many attempts to explain
psychophysical measurements of critical bands measuremenis solely on the basis
peripheral auditory physiology up through the auditory nerve have becen
satisfactory. It 1is probable that a portion of this filtering is effected in
more ccntral neural mechanisms, and that such data as auditory nerve tuning
curves would provide an incomplete model for speech perception. We thereforc
believe the most appropriate f{requency analysis should be based on
psychoacoustical measurements. Table 4.1-1 lists a set of experimentally
determined <critical bands which span a large fraction of the audible spectrum.
Note the non-uniform bandwidths and center frequency spacing.

A well-known property of linear filters is the inverse proportionality of
temporal and 'requency resolution (bandwidths versus risetime). Consequently,
as a filter's bandwidth increases, more precision in timing is possible. Nerve
latency data suggests a lower limit for auditory resolution of around 2 ms.
Low frequency stimuli give significantly worce resolution duc to the
corresponding narrowei bandwidths of the low frequcncy channels, however, and
temporal resolution in this range is roughly 12 ms. Although such stimuli as
clicks can be resolved even when separated by as little as 2 ms, wundcsirable
elfects emerge when specch perception is modeled with such acuily. For
example, pitch periods of a voiced segment of specch would be resolved. Since
our analysis does not include the provision for using this information. an
overall model resolution of no better than 10 ms for any channel s

appropriate.
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Filter Number Center Frequency Bandwidth

1. 50.00 70.000
2. 120.00 70.000
3. 190.00 70.000
4. 260.00 70.000
5. 330.00 70.000
6. 400.00 70.000
7. 470.00 70.000
8. 540.00 77.372
9. 617.37 86.005
10. 703.37 95.339

11, 798.71 105.411 :

12. 904.12 116.258 )

13. 1020.38 127.914 y

14. 1148.30 140.423 -

15. 1288.72 153.823 et

16. 1442 . 54 168. 154 o

17. 1610.70 183.457 S

18. 1794 .16 199.776 i

19. 1993.93 217.153 .

20. 2211.08 235.631 ' e

21. 2446.71 255.250 BRG:

22. 27¢1.97 276.072 3

23. 2978.04 298.126 "3

24. 3276.17 321.485 i

25 3597.63 346.1386 3

E-w%

Table 4.1-1 Critical Band Center Frequencies and Bandwidths Used. {fxfi
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Intensity is perceived as a nonlinear function of the energies in the
various critical bands. The first step of analysis is filter output envelope
detection. Various mechanisms have been postulated, which include many
different types of nonlinearity followed by linear filtering, resulting in a
slowly varying signal {or each channel. The second step involves relating the
envelopes to perceived loudness, JND's (just noticeable differences), cr other

mesasures.

Masking is a mechanism undoubtedly arising from both peripheral and

central processing. Critical band measurements often involve steady-state
signals masking other signals, or simultaneous masking. Critical band
decompositions naturally model this masking. Another form of masking occurs
hetween signals separated in time. Most of the nonsimultaneous masking

theories involve exponcntial decay of masking functions with time with or
without frequency-dependeat time constants.

4.2 Analysis Procedures

To assess the quality of coded and distorted speech using aural models, we
must take into account the audibility of differences in the signals. Since we
are assuming all of the distortions in the study are perceivable, the task
becomes one of quantifying these differences.

The ecar's frequency resolving ability strongly suggests a specctral
analysie should be done to bolh the reference (original) specech and the
distorted speech. Hence, in this study, analysis paralleling critical band
filtering was performed. Of the many alternatives for the computation of the
critical Uond-spectrum, such as LPC spectra, DFT's of windowed specech (lime
dependent Iourier Transforms), and filter bank analysis, we chose the first and
Lthe last. The car shows little sensitivity to phase as long as components arc
nol within critical bands, and appears to respond Lo cnecrgy as a function of

frequency. Our _nalysis involved short-time spectral densities. We will
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v denote the energy: IV(n.s.d.m)l2 where n is the time index, 3 the speaker, d

the distortion (d=& means no distortion) and m is a discrete variable

representing the critical band over which the energy is summed. In the LPC
method, a high density DFT of the LPC spectrum is computed, and the energy in

critical bands is summed. The windows for summation in the frequency domain

! .
L

should look like Figure 4.2-1 for auditory modeling. The pre-emphasis of

roughly 3 dB/octave inherent in the wider bandwidths must be compensated. The

e

problem with the previously mentioned computations is that althougn bandwidths

increase with frequency, time ress!ution iz nol proportionaily enhanced. To

B

"

g

A
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A
%
R
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this end, we perform digital filtering and envelope detection instead, where

critical band energies can be sampled faster for wider bandwidth channels than

narrow ones.

'
L ;J’.AL.-.'...A“LM

Once critical band spectra were computed for original and undistorted

!

d

)

] data, comparisons were made. Sensation and auditory nerve firing rates require fi
g a nonlinear scaling of the energy envelopes. For an isolated lilter's energy ““J;
? at an isolated Lime (one frame), the critical band spectral distance between "j
i e
Lt

the reference and distorted speech frame for that channel should be a monotonic oy

function of the magnitude difference of the non-linearly scaled energies in the M

. X

two. Here, the distance would be of the form:

TTLYaY
|
.

: D, = (I, [V(n.s.dm)] - 1 [V(n,s.d,m)]]] 4.2.1 o
4 - -4
. .
‘ where fl( ) is a non-linearity such as a logarithm or power {unction. Ly
A

Combination of the different {requency band contributions to the overall [rame .fé

R

( distance requires both a nonlinearity applied to Dm. as well as a weighting "”;
- ¥

which we assumc will depend on the band’'s energy. .f
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7/
L-1
F, - 2 [1,(V(n.s.d,m)(4(D,)] 4.2.2
n=0
where the index of summation, n, covers all critical bands. Previous work

suggests that fa( ) should be | |p where @ is a positive integer, and fz( ) is
a monotonic non-linearity such as logarithm or a power function. Combination

of (frames to arrive at an overall measure is accomplished in a similar manner:

) W (F)
Overall distance = a " 47

) w

n 0
where Wn is a weighting function denoting frame n's overall importance, and
r4( ) 138 usually the inverse function of f3( ). In our study, we only used
f3 = | |P and !4 = l II/P. Note that these choices amount to computing L
norms for L dimensional vectors comprised of the nonlinearly transformed
magnitude spectral samples.

This established framework allows for a large number of thcories to be
tested. The fl( ) nonlinearity can be modeled by the JND structure for bands,
or 1nstead by the [form that perceived loudness takes on as a function of
intensity. In the first case, a logarithm shou'd be used, and in the sccond, a

non-integer power function is appropriate. By the same logic, fz( ) should

take on a similar form, although the two non-linearities need not be the same.

We can also allow the functions to estimate at maximum and minimum value. As
. P 1/P .
mentioned, 13( ) and f4( ) are of the form | | and | | . This allows
frequency based combinations to follow ag [.p norm mecasurcs. Another more
complex 3set of mcasures we called Klatt measures were employed, and will be
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described in more detail below.

4.2.1 Log Spectral Distance Measu:cs

According to the notion that the perceived intensity of one stimulus to
another is proportional to the ratio of the two intensities (Fechner's law) or
that intensity resolvability is proportional to intensity (Weber's law), the fl
nonlinearity should be logarithmic. With the notation that F(n,s,d) is the

frame distance for speaker s, frame n, and distortion d

1/P

L-1 -

2 lV(n,s,O,m)Iyl1og[-Yg9;§;¢;Tz]!

m=0 V(n.s,d,m) H

F e Bmaad) = [P0 o

L-1
Y IV(n.s.¢.m)|Y
m=0

was used.

4.2.2 Power Function Spectral Measures

Psychophysical measurements point to significant modeling errors obtained
from application of Fechner's or Weber's law. A more accurate model states
that the perceptual intensity doubles for every N dB increase (N is usually sect

to 10). Therefore, if we let i and i be the perceived intensities, and i

ip 2p 1’
and iz be the actual intensities, the relation is:
ilg i1
logz(;- ) = N log . (-i-) 4.2.2.1
2p 2
or

1p _ ,(N/10)10g ¢ (f})
i

lzp 2

4.2.2.2
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Table 4.2.2-1 Articulation Index Weights

93

Weight

.003
.003
.003
.007
.010
.018
.0186
.017
.017
.022
.027
.028
.030
.032
.034
.035
. 037
. 036
. 036
.033
.030
. 029
.027
.026
. 026

e
A
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_ 5(N/10)(log,10) (logz(il))

4.2.2.3
‘2
i logz[(xllxa).SN/IO] 4.2.2.4
=2
_ ¢+ ,: 03N
=z (11/12) 4.2.2.5
Therefore perceived intensity grows as magnitude to the .06N power. If N=10,
this exponent becomes .8. A general form in which the exponent is left a free
parameter, 8, would result in:
fl(x) = x8 4.2.2.6
Therefore:
L-1 1/P
2 (V(n,s,&,m))YIV(n.s,&,m)B—V(n,s,d,m)alP
R 4.2.2.7
n
L-1
2 V(n.s.&.m) i
m=0

4.2.3 Articulation Index Approximation

Although our goal is to characterize the quality of speech rather than its
the intelligibility of speech, there should be some similarities in estimation
methods for both. One set of procedures useful for predicting intelligibility

frem a description of signal to noise ratio as a function of frequency falls

under the category of articulation theory. The computed value, articulation
index, can be calculated in a variety of ways. Kryter's method [4.1) divides
the [frequency scale into 1/3-octave bands. Signal to noise ratios (SNR's in

dB) are computed for each band, with a maximum of 30 dB, and a minimum of 0 dB
allowed in each band. Band specific weights, listed in Table 4.2.2-1, are

applied to each SNR, and these weighted values are summed.
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There are a number of differences between this method and our approach.
First of all, our filters are not 1/3-octave, but rather are critical bands. It
anything, our analysis should be an improvement over Kryter's analysis which is
only a critical band approximation. The weights which are used for the 1/3-
octave filter bank can be interpolated to produce the appropriate wcights for
our procedure. Sccond, in our Iramework, only approximate SNR's are computed.
This is accomplished by observing the differences in the original and the
distorted filter bank signal energies. Third, we do not look at long term
SNR's, but merely averages over many frames. With the differences kept in

mind, our version of the articulation index gives a frame measure of:

~1
Fn = 2 Wﬁmaxio. mln[ZOloglOV(&.m)-BOIOgIOIV(ﬁ,m)-V(d.m)I.30]!. 4.2.3.1a
m=0
L-1
= 2 W N 4.2.3.1b
m
m=0

So that additic-al degrees of freedom could be incorporated into the model, we
allowed an energy dependent frequency weighting as well as Lp norm for

frequency band combinations. The resulting frame distances:
L-1 1/P

P
Y V(n.s.bm) Y (N)
R LS 4.2.3.2
L-1

) Vs bom) |

m=1

appear similar to the log spectral distances.
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4.2 .4 Forward Maskiq& Models

Simultaneous masking of signals is modeled by the critical band analysis,
which describes masking as a function of frequency separation. Temporal
maskhing, masking of one stimulus by another separated in time, also occurs.
Because the effect is more dramatic when the masker precedes the target
(forward masking) than the reverse (backward masking), only forward masking was
considered. Yarious experiments indicate that masking level dccays
exponentially in dB with linear time [4.2] separation. The time constant for a
1000 Hz stimulus is roughly 75 ms. In other words, if the masking level of a
stimulus is B0 dB at t=0, at t=75 it will be 80/e dB=30 dB. Denote T the time
constant for frequency m. [f the masking level at time t for frequency m and a
stimulus which is no longer present is M(t,m), it would be M(t,m)/e at t=t+rl
or M(l+tl,m)=M(L,m)/e. This amounts to a frequency dependent smoothing for
each filter's envelope which can be accomplished by:

M(n+1,s,.$.m) = r(m)M(n.s,.$.m)+2010g V(n+1,s,$,m). 4.2.4.1
10
The constant r{m) specifies the amount of smoothing and is frequency dependent.
The new values, M(n,s.#.m), can be placed into the same framework as V( } in
the log spectral distance measures.

4.2.5 Klatt-Type Mcasures

One intercsting frame distance measure which was originally formulated for
speech perccption modeling has been presented by Klatt [4.3). This measure was
based on the observation that certain distortions (e.g., addition of a spectral
tilt) may result in large psychoacoustic differences, but charge the percecived

phonetic units very little. Four basic points were proposed by Klatt:

1) Frequency dccomposition should be made which is based on <critical-
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bands.
2) Intengsities within the frequency bands should be measured in dB SPL.
3) The slopes of the log critical-band spectra should be compared rather
than the spectra themsclves.
4) Differences in slopes of the log critical-band spectra should be

weighted in a manner which weights peaks more than valleys.

Klatt's basic distance was of the form

D, = ) W(i)[s1(i)-s2(i))? 4251
i
where S1 and S2 are spectral slopes and W(i) is the weighting for each band.

By suitable adjustment of free parameters, correlation between
experimentally obtained phonetic distance judgments using isolated, synthetic,
steady-state vowels and the above measure achieved a correlation of .93 wusing
Lthis objective measure. Our feelings were that although these tasks are quite
different from ours, some of the same factors may be involved in subjective
phonetic distance judgments as in subjective quality evaluations.

4.3 Objective Measures

In this =section we will describe the implementation of the objective
measures which were introduced earlier.

4.3.1 Filter-Bank Analysis

The critical-band filters were designed in accordance with measurements

and theory presented by Patterson [4.4]. Filter shapes were Gaussian. with the

center f{requencics and bandwidths listed in Table 4 1-1. Twenty-live filters
were used to cover the spectrum 0-4000 Hz. All filters were designed using a
97-point Hanming window. Finite impulse response filtering was performed on

the original and distorted waveforms, ard RMS values were computc! cvery 10
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msec using a 20 msec Hamming window.

4.3.2 Frame Combinations

The main concentration of our objective measures work involved exploration

of how the 10 ms frames f{rom the distorted and original speech signals should
be compared. For a given set of frame distances, F(n,s,d), objective quality e

was computed by asimply averaging F(n,s,d) over n. In the previous study,

Barnwell and Voiers had found that weighting frames by some function of *b-~ir

energies did not improve the performance of the objective measures tested

{4.5). We use this result as justification of our procedure. f’i

4.3.3 Frequency Weighted Objective Measures }ig
3 In the l.g spectral measures, f{rame distances were of the form shown in .E
"‘ equation 4.2.1.1. Here L=25, and the m index denotes the different critical iﬁ%

band channels. The [free parameters were ¥y and P. The values wused were ;

¥y=0, 2,.4,.6,1.0, and P=.2,.5,1,2,3.

The power function spectral measures were as in equation 4.2.2.7, with ;;i
free parameters vy, P, and 3. The values used were <v=0,1,; P=1,2,3,; and Tii
5=.2,.3,.6, 1.0, 1.5, and 2.0.

The articulation index approximation as in equation 4.2.3.2 left the free fj;

{._ parameters <v=0,.2,.4,.6,1.0, and P=.2,.5,1,2, and 3. Also, in order to L?f
ivl investigate the effect of the value of the weighting vector W listed in Table :?E
E;_ 4.2, all experiments were repeated with no weighting, i.e., a weighting vector ilé

with all elements of W equal to 1.

The forwaurd masking models in accordance with Duifuis [4.2] allowed

t . . " . Y

'lv . . . .

S
@

exponential decay of the log intensities. The frame measure was generated as
showi in 4.2.1.1 but with M from equation 4.2.3.2 substituted for V. Because -}}?

;V of earlier results, we fixed y at 0, and let P and r(m) (specifying rate of

K] decay - see equation 4.13) vary. The range for P vn»3 ,.5,1,2, and 3, and . :nj

:.1 r(m) varied over the range 0,.2,.5,.9,.95. Mute m. "2 va.ie 0 is the ‘{f%

’ s
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, <
. W(d,m) =
4 [Cl+maxV(n.s.d,k)-V(n.s.d,m)]
k
C
+ 2 4.3.3.4
[C2+local V(n,s.d,m)-V(n,s,d,m)]
( max m
The max V(n,s,d. k) term indicates the maximum value V(n,s,d,.k) achieves as k is
m
varied, and local V(n,3,d.m) indicates the valuc V(n.s.d, k) takes on at the
4 max m
. closest pcak to frequency band m. The frec paramcters arc Cl' Cz, and P,
299
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extreme of case of no masking or a time constant of 0, and the other values
lead to time constants of 6, 14, 95, and 195 ms respectively.

For the Klati-type measures, we use Klatt's basic form as listed in
equation 4.2.4.1, with =light modification. First, we define the slope of the

spectrum as

S(n,s,d,m)=2010g10[V(n.s.d.m+l)]-2010g10[V(n,s,d.m)] 4.3.3.1
where V( )} is as belore. Due to the fact that we have 25 spectral values, the
index varies between 1 and 24. Not wishing to restrict ourselves to L?

norms, we modified 4.2.4.1 to allow a free parameter, P, which gave a frame

distance:

24
F(n,s,d) = 2 W(m)IS(n.s.#.m)-S(n.s,d.m)IP /e 4.3.3.2

m=1

W( ) depends on both the distorted and original frames, and is specified by
W(m)=[W(p,m)+W(d,m)]/2, 4.3.3.3

where W(d.m) depends solely on the spectrum V(n,s,d,k), for k=1 to 24.
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Yalues chosen were Cl=10.20,30.40.50,80.100. and 1000, C2 = .5,1,2,10,100, and

1000, P=.5,1,2. Plecase note that for the cases Cl and C, large, the weighting

2

approaches 1 for all frequencies.

4.3.4 Trained Measures 71
\- ,;"i

Outside of critical bands, minimal auditory interaction takes place. In e

-~‘.. e

speech, however significant correlations exist across bands. In addition, for o8
A

the set of distortions in our tests, individual frequency band distances should N
show some correlation with each other. A way of accounting for this would be }
L

to find the best linear combination of {requency based distances for predicting 1
subjcctive quality. This procedure would amount to choosing a weighting , j
vector, W(m).m=1,2,...,25, to maximize objective and subjective quality %
correlation. In this study, optimum vectors were computed for four contexts. ,!‘
T

The first two contexts weighted different frcquency bands for the log spectral
g

"."'.'1

measure as in equation 4.2.1.1, but with the constraints: <=0 and P=2, giving ’g
Uy

the form: -.__.g
LN

s

2| 1/2 T

V(n,s.®.m

Y W l1og Yin:2:.0.m) =

m V(n,s,d,m) - .i

Fn L e AL L LR R 4.3.4.1 o

v e

m R

m e

. _.-'~‘

A |

In one, all 25 bands were employed, whercas in the second, [ivc bands were .. ﬂ
determined by summing filter cnergies in groups of 5 at a time. A similar :'.: "j
procedure was performed for the power-law spectral distance, wherec vy, &, and P ‘,-_::‘ T
!‘ for equation 4.2.2.7 were set to 0,.2, and 2 respectively, giving frame . _,.01

distances of :
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In this, both 5§ and 25 band analyses were performed.

The two results of each analysis of interest are the actual weighting
vector as well as the correlation achjieved.
4.4 Results

The computed objective measures were calculated with the composite
acceptability subjective measure described in Chapter 2. The f{igure-of-merit
used in this portion of the research was the magnitude of the estimated

correlation coefficients, p.

4.4.1 Log-Spectral Distance Measures

log-spectral distance measures of the form given in equation 4.13 were
tested using the {ree parameters given in section 4.3.3. The following

observations were made.

1. For P held fixed, and ¥ varied, best correlation resulted from y=0.0, for
all values of P. Furthermore, the degree of correlation invariably
decreased as y moved further away from 0.0 in value.

2. For ¥y held fixed, and P varied, best correlation resulted from P=2 or P=3
with P=1 giving reasonably close performance. Values of P less than 1
werc inferior in performance to the larger values in all cases.

3. Of the 25 combinations of parameters, the top five were:
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Rank P Y lpl (correlation coefficient)
1. 2.0 0.0 .715
2. 2.0 0.2 .707
3. 3.0 0.0 .705
4. 1.0 0.0 .703
5. 3.0 0.2 .702

Subsets o! the distortions which fit into particular categories were
observed also. ADPCM and CVSD type distortions led to almost perfect
correlation, as one might expect since the set is highly restrictive. Larger
sets which included pole distortions, coding distortions, wide-band
distortions, controlled distortions, added colored noise, added white noise,
and bandcd distortions, were tested. Each of these included a minimum of six
sets of distortions (most contained more) giving at least 144 data points for

correlation analysis. Listed below are the best set of parameters for each set

of distortions.

Distortion v P |
Wavelorm Coders (WFC) .4 2
Pole Distortions (PD) 1. .2
Coding (CODE) 0 3
Wide-band (WBD) .2 1
Controlled (CON) 0 2
Colored Noise (FN) 0] 2
Banded (BD) 0 2

Most of these fit the pattern of small y and P larger than 1. Pole

distortions were not matched well at all by any set of parameters. This can be

attributed to the small spread of the subjective composite acceptability
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results in this set of distortions. This problem is discussed in detail in
Chapter 3. In general, however, results are fairly consistent across
distortions. The high correlation of objective quality with composite
acceptability of added noise distortions, no doubt reflects the fact that
audibility of noise and perceived quality are closely related.

4.4.2 Power Function Spectral Distance Measures

Power function distance measures with frame distances of the form given in
equation 4.10 were computed with parameters listed in section 4.3.3. After

running correlation analyses, the following observations were made.

1. For v and P held fixed, correlation was always best for §=0.2, with 8=0.3
yielding comparable but slightly worse results. In addition, as ¥
increased in valuz, performance monotonically decreased.

2. For P and 8 held fixed, performance was generally best for 5=0. Only when
P and 8 were far from their best values did y=1.0, give better correlation
than y=0.0, and then only slightly better.

3. For 8 and vy held fixed, performance was generally superior for P=2.0,

although P=1.0 and P=3.0 were not much worse.

4. The best five combinations of parameters were:

Rank Y 5 P lel
1. 0.0 0.2 2.0 .721
2. 0.0 0.2 1.0 .719
3. 0.0 0.3 1.0 714
4. 0.0 0.2 3.0 .712
9. 0.0 0.3 2.0 .695

V¥hen subsets of distortions were observed as described in the previous

soction, the best set of parameters in tcrms of correlation were:
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Distortion Y L) P I
WFC 0.0 0.8 1.0

PD 0.0 0.6 3.0

CODE 0.0 0.2 2.0

WBD 0.0 0.2 1.0 or 2.0

CON 0.0 0.2 2.0

FN 0.0 0.2 2.0

BD 0.0 0.3 1.0

Again, a consistent picture emerged in that -y should be 0.0 and P could be 1.0,
2.0, or 3.0 with little difference. Only waveform coders and pole distortions
led to ad different from 0.2 or 0.3, As with log spectral measures, good
prediction of colored noise distortion acceptability was possible.

4.4.3 Articulation Index

Measures of the form in equation 4.12 were tested with the parameters as
described in section 4.3.2. When weighted by the vectcr in Table 4.2, the

following results were noted.

1. Yery little variation in performance existed for the entire set of
parameters, with best coarrelation coefficients of .87 and worst .58.
2. For ¥ held fixed, the best value for P was either 0.2 or 0.5.

3. For P tixed, the best values of v tended to be small, although, not always

zero.

4. The top 5 systems were:
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Rank Y P lel
1. 0.0 0.5 .87
2. 0.2 0.2 .87
3. 0.4 0.2 .8%
4. 0.0 0.2 .67
S. 0.2 0.5 .87

The unweighted measures were also tested in an identical manner with the
same values for the parameters. Results which were very similar to the

previous tests were achieved.

I. The top 5 systems were:
Rank Y P ol
1. 0.2 0.2 .87
2. 0.4 0.2 .67
3. 0.0 0.2 .87
4. 0.0 0.5 .87
S. 0.8 0.2 .87

2. For P held fixed, better results where generally achieved with y small.

3. For v held fixed, in all cases, correlation was a m-istonically decrecasing

function of P.

4, The spread was much larger than in the weighted case.

For the original articulation index characterization, the parameters +v=0
and P=1 should have been used. These led to scores of .65 and .84 for the
weighted and unweighted cases, respectively. These valucs were not far from

the maxima achieved. In the regular log spectral distance measure, ¥y=0 and P=1

led to a correlation of .70.
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Distortion subsets were also tested on the unweighted measure with the

following results:

Distortion Y p |P| . :;3
WFC 0 0.2 .70 e
PD 1 0.2 .30

CODE 0 0.5 .83

WED ALL IDENTICAL 40
CON 0 0.2 .54
FN 0 0.2 .90 i i
BD 0 0.5 .88 e

For all but the pole distortions (which as mentioned earlier, gave little

spread in subjective quality) small values of y were best. The prevalence of 374
values of P less than 1 appears throughout. For the additive colored noise
distortion, as expected, good correlation was achieved. i
4.4.4 Forward Masking Models “T;
Log spectral distance measured were also formulated to wuse (frequency .
dependent levels, where the levels were computed as in equation 4.1.3 with . %
decay rates described in section 4.3.3. In all cases, for P held fixed, o
maximum correlation was achieved for a time constant of 0 for all channels, or ;il
no additional forward masking. The same result was observed for all the ;‘1:
- distortion subsets. The best results for the various time constants are listed =
E; below.
z. Time Constant |p| :t:i
0 ms L7177
6 ' .708
14 .694
: 95 .875 .
. 195 .627 ‘ - 1
: 106
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4.4.5 Klatt-Type Measures

section 4.3.2.

2.

Correlation tests

For all combinations of parameters C1 and Cz.

were run on the Klatt-type measures

correlation to using P=2.

The following points were noted:

using P=1

as

gave

described in

superior

In most cases P=0.5 outperformed P=2, and in a

few instances outperformed P=1.

For P fixed at 0.5,

Rank

1 and 2 rankings were as follows:

10.

20.

10.

30.

20.

40.

40.

40.

S0.

50.

1000.

100.

60.

50.

40.

1000.

10.

10.

100.

1000.

1000.

1000.

1000.

1000.
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For P=0.5 or 1.0, many other combinations resulted in correlations of
roughly 0.73.

The interpretation for the meaning of Cl is that as it increases, the
difference between the largest frequency band intensity and the intensity of
the frequency band examined becomes less important. Similarly, as C2
increases, the difference between the intensity of the examined band and that
of the closest local maximum becomes less important. Note from equation
4.3.3.4 that sgince all intensities are in decibels, and differences are
actually ratios, the measure is normalized for overall gain. Therefore, no
terms similar to the energy weighting terms which were used in the previously
descr ibed measures were used in this measure. The difference terms in equation

4.3.3.4 vary between 0 and 60, with the bulk confined to the 0 to 40 range.

The different values of P led to different choices for Cl and CZ' In his

initial experiments, f{or phonetic distance, Klatt essentially used only P=2;

He found optimum values of Cl and C2 to be 20 and 1 respectively. As is
evident from the table above, near maximum correlation for P=2 was achieved
with just such a combination. For P=1, and C1 fixed, C2 tended to be larger,
although a wide range was spanned. For P=1 and C2 fixed, C1 tended to give
best results when it was roughly equal to 40. W¥hen P was 0.5, maximum
correlation was achieved for C2=1000, and Cl large. We find it interesting
that when P was 0.5, the best weighting was none at all, for P=1, the weighting
was moderate, and for P=2, the best weighting was substantial. The most
asthetically pleasing of these is the P=0.5, C1=1000. C2=1000 case, which was
one of the best combinations tested. Here we see distance as a combination of
square roots of differences between spectral slopes with no weighting.

Differences in slopes are the same as differences between the tangents of the

corresponding angles. Since the inverse tangent function has much the same
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shape as the square root function, it may be that an important factor is angle,
or something similar.
As with the other measures, various subsets of distortions were explored.

The parameters giving best correlation for some of them are listed below:

Distortion C1 C2 P Iol
WFC 1000. 100. 2 .79
CODE 1000. 1000. 1 .53
WBD 1000. 0.5 0.5 .61
CON 100. 1000. 0.5 .73
FN 1000. 1000. 2 .90
BD 40. 1000. 1 77

We observe good correlation for additive noise and waveform coder distortions.
Other types of distortions were not modeled as well with a notable deficiency
in coding distortions.

4.4.8 Trained Measures

Measures as described in section 4.3.4 were analyzed for optimum values
for Wﬁ. Table 4.4.6-1 lists the values achieved for the 25 and 5 band cases
for log-spectrai distance. Given optimum weightings, we observe substantially
better performance f{or the 25 band case. Also, comparing optimum weighted
performance with unweighted for the 25 band case, we see¢ improvement in log-
spectral measures from |p|=.72 to .78. With power-law measures, the
improvement 1is only from .72 to .74. The [five-band weighted log-spectral
mecasure gives results close to the 25 band optimum whereas the (five-band
weighted power-law measure is markedly inferior.

We see no clear interpretation for the meaning of the weights in Table

4.4.6-1. The large number of zeros in the table indicates the high degree of
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Band
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Combined
Band

(S S% I S

Table 4.4 .6-1 Trained

Log Spectral
Distance Weights

-80.
1086.
0.
0.
103.
140.
0.
0.
0.
-32.
0.
0.
0.
0.
-27.
0.
-48.
0.
0.
15.
0.
-76.
0.
0.
25.

-16.
-4.
-10.

R X R

LOoOOROCUOOHLODBIOOOODOOOU—O0OOND

Power Law

Distance Weights

T ONOCVUOVNUWOONCODOWWOOSOWN

.47

-1
-1
-1

Weights for the Trained Measures

110

PSP Sy St S

e T

.75
.31
.71
.65

~
Y

A I S
P
P}

:‘n
2.

T =
= -

L tm monia st . e Teute T s e R Een
. I R N e N At s L L]



\w——

redundancy in many of the channels for the distortion set in our data-base.
In an attempt to see if the optimum weights were robust, we conducted a
few experiments. First, various subsets of distortions were cvaluated for

correlation of objective and subjective data. The results are listed below:

Distortion Iol
WFC .81
CODE .60
WBD .69
CON .83
FN .94
BD .70

In almost all cases, «correlations were superior to those reported in
section 4.4.1). This shows that the weights giye improvements pretty much
across the board, giving some hope of robustness.

Another simple experiment consisted of extending the duration over which
the measure was computed by roughly 40%. Objective and subjective quality wecre
then recorrelated with a resulting coefficient of .717. This number is almost
identical to that achieved with the unweighted log spectral distance over the
same interval. VYhen weighted measures were calculated over the interval not
used in training, the correlation coefficient was only .56. Also unweighted
log-spectral distances computed over the same inte.val as the weightecd measures
were Ltrained on resulted in correlation of .75. The conclusion we draw f{rom
these data is that the training of the weights gives an only minor improvement
(e.g.. .75 to .78) when testing occurs over the same intervals used in

training. When we include additional speech outside of these intervals, the

trained measures lose their advantage. We feel, therefore, that the weighting
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cocfficients computed in training have little or no meaning in themselves.
4.5 Discussion

The measure:: we tested were in many cases similar té those wused is
previous work by Barnwell and Voiers [4.5]. The main property the auditory-
based measures had in common was the critical band based spectral analysis.
Various additional aspects will be examined.

Tests gimilar to our log-spectral and power-law measures but wusing
uniformly spaced samples of LPC spectra were made on the same data-base by
Barnwell and Voiers. In both cases, optimum parameters closely matched those
observed by us. For example y=0 in both sets of measures was best. Both
studies also found the best exponent for power-law spectral distances to be
0.2. With these values the same, however, critical band spectral analyses led
to correlations of .72 and .72 whereas, LPC spectral distances led to
correlations of .80. Clearly the non-uniform spacing of bands was preferable.
In the earlier study, non uniformly spaced LPC spectral samples werc also
computed by lumping 32 uniformly spaced samples into 6. Both log spectral and
power-law measures achieved maximum correlations of .68, which are comparable
to critical-tand performance. Another factor which will be addressed shortly
involves the fact that the LPC spectrai analysis had poorer time resolution
than the critical band analysisu.

The articulation inde* approximation sought to measure short-time signal
to noise ratios using critical band spectra, A wider class of distortions
could be tested than with a time-domain short-Lime SNR, but at the expense of
precision. This is evident from a result obtained by Barnwell and Voiers in
which time domain short time SNR's had correlations of .78 with subjective
acceplability of waveform coders. The articulation index measure achicved
correlation of only .70 with the same subset. However, a correlat on of .67

was Fpossgible for the sct of all distortions where the time domain system could
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only be used on a few of them. The weighting function applied to the
traditional articulation index was shown in our context to give no more than
slight improvement over unity weighting, which demonstrates a possible
discrepancy between quality and intelligibility requirements.

The forward masking models tended to diminish the time resolution of the
spectral analysis. A time constant of zero amounted to the 10 ms time
resolution of the critical band analysis. Considering the degradation that
occurred when this was extended to 16 ms (p=.717 went to p=.708), it may be
possible that the 10 ms frames were too wide. The frequency variant measures
of Barnwell mentioned above had a resolution of 15 ms. Comparing our critical
band analysis smoothed to 16 ms resolution correlation result of .708 to
Barnwell's .88, we see a close correspondence. In view of these facts, one may
question the importance of the precision with which we formulated the spectral
analysis, and argue that most any reasonable frequency variant spectral
analysis choice may be virtually equivalent. The filter bank approach appears
to have been worth a few percentage points in correlation, perhaps because of
the increased time resolution. This could possibly be compensated for by a
smaller LPC analysis windows, however.

The trained measures give an upper limit on what is possible for the
particular measures tested. Although the results are hard to interpret, they
allude to the fact that not all 25 filter bands are necessary. This result is
highly dependent on the d{stortion set we used, and enough degrees of freedom
existed with the weighting vector to encourage artifactual results. Again,
however, this procedure tends to indicate that precise critical band analysis
may be unneccssary for good results.

The Klatt-type measures performed best of all. Two factors may account

for its superior results over the log-spectral measures: 1) usc of spectral
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slopes rather than spectral magnitude, 2) the particular weight}ng function s
used, Consider the log spectral distance with y=0, and the Klagi measure with ) 35"
C1 and C2 large. The measures are essentially identical except for spectral kF;
slopes being used in the latter case as opposed to log spectra in "he former. ) e
For P=1, the log spectral measure gives correlation of .70 and the Klatt
measure gives . 73. However, for P=1, the former gives p=.72 and for the latter "

p=.67. Therefore, simply converting from log spectra to slopes does not always

'

:

T

b

L

s

i

E; lead to improvement. It should be noted, however, that given the same number fif
L of free parameters, the best Klatt-type measures outperformed the best critical
? band spectral distance measures. One of the best performing of the Klatt f’—:f!
E measures used unity weighting, however (with P=.5), which supports the idea

E that the slopes, rather than the weights, are important. Our conclusion will

e be that there is significant potential in this type of measure, and that it is o
fi the combination of slopes and weights which makes {t unique.

4.6 Conclusion

We feel that several statements can be made in summary.

RPN
It

1) Simple psychophysical models do not model subjective quality extremely ;:;
well. For example, the psychoacoustical growth of loudness exponent of 0.8,

when put into the critical band model, performed much worse than an exponent of ?;f

L
- )

0.2. OQur belief is thalt degradations not modelable by simple distortions go

much beyond the auditory periphery in their perception, aiid are inextricably

2 e T

-

linked to more central neural processes. The emergence ol an exponent of 0.2
in several instances is quite puzzling, and possible explanations are under
close scrutiny.

2) The precise Gaussian shaped critical-band filter bank characteristics i
may be of little importance as long as a falr number of roughly logarithmically

spaced channels are used.

3) Time resolution better than 10 ms may be desirable. Onc suggestion is o
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that short windows allow differences in transient phenomena (e.g. bursts) to be
oy
. - measured.

v AL
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i ) . 4) Simple speech perception models, such as the Klatt type measures, may

i be of greet value in the task of predicting subjective quality. Further 3]
o 2
[ expangion of our work to other models, we feel, has great potential. j-j.j
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CHAPTER 5

!
+ AR

PARAMETRIC OBJECTIVE MEASURES i

5.1 Desirability of Estimating Subjective Parametric Quality

The purpose of any speech communications system is to permit wusers to

communicate easily and effectively via speech. A minimum criterion for
i effective communication is that the speech communications link be able to a»-~
reproduce a highly intelligible version of the user's speech. However, speech
systems which reproduce merely intelligible speech usually do not perform well ::?
II with a casual speech style, and hence are not ecasy to use. Higher quality ;:l
speech reproduction permits a more natural speech style and promotes more
effective communication since important semantic cues for speech

communications, talker emotional state, or other talker qualities can be e

o]
a

transmitted. Users can be expected to judge a speech communications system

relative to their experiences in face-to-face conversation, and for ecach A

II individual there will be a level of degradation for which a  speech ‘;;

communicatjon system will no longer be acceptable. If this minimum acceptable ?:"

level is extended into a continuum of levels of acceptability, then a better 76;

.u criterion for easy and effective communication might be for the user to :L:

subjectively rate the gsystem in terms of how acceptably . reproduces the ;5?

user's speech. ?ff

’j The Diagnostic Acceptability Measure's Composite Acceptability scale is ; ;

' exactly this kind of subjective quality assessment (see Chapter 2). It ETE
vprovides valuable information for assessing quality and complexity tradeoffs in

.' spcel :»mmunication systems. Unfortunately, bacause of the vague and all- ii;

7 encomp~ssing nature of subjective acceptahility, the Diagnostic Acceptability §;:

Mecasure, or DAM, compositec acceptability measure is difficult to track using _;i

° ) objective measures. 'The quality of acceptability does not give any clues as to “;;
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the appropriate functicnal form for a corresponding objective measure.

There is, however, more than one quality assessment in the Diagnostic
Acceptability Measure, and most of these are considerably more specific in
scope then the compnsite acceptability scale. Table 5.1.1 lists the entire set
of quality assess@enta which are provided by the DAM. Whereas the composite
acceptability scale does not suggest a corresponding objective measure, many of
the parametric subjective quality scales do. Therefore it is reasonable to
expect that objective measures can be designed which will track these more
specific parametric subjeclive qualities successfully. Once these specific
obiective measures are designed, they can be combined in a linear or nonlinear
functional form and, wusing regression analysis, a measure for composite
acceptability can be developed. Such objective measures would also have the
advantage of providing additional diagnostic information about the nature of
the perceived distortion which would not be available from an estimate of
Composite Acceptability alone.

5.2 Theory
5.2.1 Multiple Linear Regression Analysis

A potentially effective procedure for combining a number of individual
estimates of parawetric qualities into a single estimate of Composite
Acceptability is to use a multiple linear regression model. In such a model,

the linear relationship between subjective and objective is hypothesized as:

K
Y, ® Bo + 2 B.x + €, 5.2.1-1

where y, the dependent variable, 1is the isometric or parametric subjective
quality and the xJ's, the independent variables, are the objective measure

variables [5.1]). The Bj's arc model parameters to be estimated and €, is the
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DIAGNOSTIC ACCEPTABILITY MEASURE
PARAMETRIC SIGNAL QUALITIES:

INDEX MNEMONIC DESCRIPTORS EXEMPLARS

SIGNAL QUALITY

1 SF fluttering bubdbling AM speech

2 SH distant, thin highpassed speech

3 SD rasping., crackling peak clipped speech

4 SL muffled, smothered lowpassed speech

5 Sl irregular, interrupted interrupted speech

8 SN nasal, whining bandpassed speech e

7 TSQ total signal quality S

-4

BACKGROUND QUALITY d;

8 BN hissing, rushing Gaussian noise R

] BB buzzing. humming 60 Hz hum D

10 BF chiiping, bubbling .

11 BR rumbling, thumping low freq. noise

12 TBQ total background quality "*J

TOTAL QUALITY

13 11 raw or isometric intelligibility

14 Ip raw or isometri~ pleasantness PRy
15 IA raw or isometric acceptability 7

18 I parametric intelligibility T
17 P parametric pleasantness e
18 A parametric acceptability Vo
19 CA composite acceptability .

Table 5.1-1 A list of the subjective speech quality scales in the Diagnostic
Acceptability Measure.
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error in the model for each observation. Subscript j is the index of the
independent. or objective measure, variable and subscript i is the index of the
observation, or the speaker and distortion system in the data base. Since
observations in the distorted speech data base entail both a speaker and a
distortion system, the observation index will more frequently indicate this
explicitly as y(s,d), where 3 indicates the spcaker and d indicates the
distortion system. The Bj are estimated in the classical manner by minimizing
the mean square error, €,. over all distortion systems in the data base. The

resulting model, which is the desired objective measure, is:

K

y = BO +j§lﬁjxij 5.2.1-2

In order for this model to be valid, the following assumptions must be

satisfied:

1. The model errors ei are uncorreclated.

2. The error € has zero mean.

3. The error € has constant variance o?.

4. The relationship between Y; and X, is, in fact, approximately

linear.

To assess the validity of these assumptions, we must investigate the source of
the error term. The underlying force which determines the quality responses in
the subjective data base is the types of distortions in the distorted speech
data base. Therefore the distorted sentences are, fundamentally, the
independent variables in that they are specified exactly. The xi's. which are
the objective measure variables, can be thought of as complex transformations
of the distorted speech waveforms. Once the transformation is fixed, the xi‘s

are exactly specified. Therefore the error term, €, should be interpreted as
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error in the subjective assessment of the quality of the distorted speech

. samples. With this established, the above assumptions can now be evaluated.

First, the errors must be uncorrelated. In any subjective test this is
insured by randomizing the order in which the data is presented for evaluation.
This prevents any evaluation bias based on previous subjective judgments of
similar speech segments from occurring. Dynastat Corporation used such a
randomized order in the presentation of the DAM materials, so this assumption
should be valid.

Second, the error must have zero mean, and third, the error must have
constant variance. These two assumptions need to be examined together. The
subjective assessments of speech quality in the subjective data base are all
mean opihion scores, that is, they are based on ihe judgments of several
individuals. Before individual opinions are averaged together, they are
adjusted to eliminate the effects of that individual's preference biases (see
Chapter 2). This means that each individual's assessment error is trensformed
to have zero mean and constant variance relative to the other listeners in the
test. Furthermore, new listeners undergo a training period prior to the actual
test, and can only proceed i{ they show a relatively small and constant quality
judgment error relative to the other listeners, across a variety of distorted
speech samples. Therefore, because individual judgments are adjusted to

conform to a group norm and because listeners are carefully trained,

assumptions two and three should be valid.

Fourth, the relationship between dependent and independent variables
should be approximately linear. If this is not true, then the assumption of
constant error variance will most likely be violated. In practice, one assumes
that the relationship ia linear, does the regression analysis, and then checks

to see that the error variance is constant. This check is most easily done by

121

Sy -
LN
L s .
St
Ve Vs
& l
-‘i
-

¢ 1t
P

-
.
soala a

P

|
}
ki

X YRR

cNTT
L
P

& _amps

i e £

|
gl

P .
A a0

~
A a

[

ek

R I, .
. A ‘ ot s e ey R
i.... Al a . s s n. LA."__L—I..4A'.. W UL

)

. AP

b

'
A4l

s
'

ol

S et
P
3'a%."
s Y0l
. o u®

.
r
4
Dond o cal’

o “.. '..'..'.
el

e
AR
[PV SN



ir
¥

ARRAAARE
RO W

looking at a plot of error, or residual, for each observation versus the
predicted value for each observation. If the model does exhibit non-constant
variance, then a transformation of some or all of the xi's may mitigate this
problem. Using transformations, the relationship between independent and
dependent variables can be linearized. If the residuals indicate that higher
order terms in x, are needed, these terms can be thought of as adding an
additional independent variable which is simply a transformation of one of the
original xi's. In this way a polynomial model can be built within the framework
of the original regression model.

5.2.2 Monotonic Regression Analysis

Monotonic regression is similar to simple linear regression in that the

_objective is to pass a curve through a set of points such that an objective

function is minimized. In the case of monotonic regression, however, the curve
need not have a parameterized functional form, such as y = ax + b, but rather
must simply be a monotonically increasing or decreasing curve. This is a case
ol regression under order restrictions, and is thoroughly covered by R.E.
Barlow [5.2]. In both types of regression there are three principal variables:
the independent variable X, the dependent variable Y, and the estimated
dependent varijable yi‘. where the subscript i is the obgservation index. Again,
in both cases the objective function to minimize is the sum of the squared
error over all observations, where the error is € = (yi - yi'). Hewever, in
monotonic regression the only restriction on yi‘, bcsides minimization of
squared error, i3 monotonicity, such that yi° < yi+l. it x. < X4 The
inequality reclating the yi‘s is ‘less than' for monotonically increasing
regression and is ‘greater than’' for monotonically decreasing regression.
Figure 5.2.2-1(a) shows a monotonically increasing regression curve fit and

Figure 5.5.2-1(b) shows a monotonically decreasing curve fit. In these Figures

x, is the frequency index of a power spectrum, Y- The independent variable x,
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5.2.2-1 Part (a) shows a monotonicly increasing curvefit to a data set

and part (b) shows a monotonicly decreasing curvefit,
}. On the y—axis the value

parts the x-axis is the value of {xIS

of {y.) is indicated by the symbol

monotonic curvefit to (yi}.
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;‘ is therefore a simple scaling of the obsérvation index i. .
The °Up-and-Down Blocks' algorithm, developed by J.B. Kruskal [in 5.2]

is an efficient method of computing a monotonic regression. Understanding the [jﬁg

;; algorithm first requires defining several terms. In the following discussion : ;;3

- assume that the dependent va:iable, x , is arranged ‘n ascending order such A

that X, <X, for all i from 1 to N-1 and that there are N elements in the o
dependent variable data set. ;;;4
BLOCK - a set of consecutive elements yj through Y j < k. The value of a tf?

block is equal to the average of the elements in that block. .ﬁkf
UP-SATISFIED and DOWN-SATISFIED - consider three consecutive blocks, B-, B, . 7‘
and B+. For monotonically increasing regression block B is said to be wup- :
satisfied if the average of the clements of B is less than the average of the
it elements in B+. For monotonicly increasing regression block B is said to be - .-
down-gatisfied if the average of the elements of B is greater than the average
of the clements in B-. For monotonicly decreasing regression the previous two ‘fﬂ?
! inequalities are reversed. Additionally, any block containing YN is :i?
automatically up-satisfied and any block containing Yy is similarly down-

satisfied.

? A flowchart of! the algorithm for performing monotonic regression is
' shown in Figure 5.2.2-2. The algorithm begins with the independent variable
data set partitioned into N blocks of one element per block. At each stage in E:;
= the algorithm one block is designated as ‘active’. Three choices are available T
for an active block. If the active block is not wup-satisfied then it |is
combined with the next higher block. If the active block not down-satisfied
! then it is combined with the next lower block. If thc active block is up- -':’
gatisfied ana down-satisfied then the next higher block becomes active. At the
start the first block is active and the algorithm is terminated when the

highest active block is up-satisfied. The values of the blocks at termination . -
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§.2.2-2 The 'Up-and-Down Blocks' algorithm. The abbreviations shown in
the algorithm are described as follows:

active block. At the start the block containing y, is the active block.
The algorithm terminates if the active block contains y_.

up satisfied, The conditional tests if the active block is up
satisfied,

down satisfied, The conditional tests if the active block is down
satisfied,

pool down, The current block is merged with the next lower block. This
new block becomes the active block,

pool up. The current block is merged with the next higher block. This
new block becomes the asctive block,

next higher, The active block is now the next higher block.
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are the desired yi‘ and are the best monotonically increasing fit to the data
vy subject to minimizing the sum of the squared error. I[f, at termination, a
block contains more that one element, for example yj through V! then each
corresponding estimate of the dependent variable, yj‘ through yk°, is equal to

the value of the block containing yj through Yy

For the work done in this study the most significant result of monotonic N
|
regression is the statistic 'stress’, which is the error variance divided by ’“"’
Lo
the dependent variable variance. This can be expressed as: SN
DS
N :j
2 f
2 (ei) -
i=1
Stress = -~------------- 5.2.2-1

v
P

z
. .

The stress of a monotonically increasing regression provides a measure

L, ST
-A. ae’ale m b A AL

of how closely a set of yi's conform to a monotonically increasing function. T
If the set is perfectly monotonic increasing then the resultant stress is zero,

and if the set is perfectly monotonic decreasing then the resultant stress s

..
e S
BA SRRSO

= one. ﬁ‘:q
3 )
K An extension of monotonic regression is uni-modal regression. This 3 i*

. regreasion technique {its a wuni-modal curve to the data set wunder the %:aj
' .9

r constraint that the sum of the squared error is minimized. This analysis can be T

' AR

. broken Jdown into three steps. In the first step the mode of yi‘ is found. ffﬁﬂ

; Assume that the observation index of the mode is M. I{ the mode of yi‘ is to be _iij
( ®

L a global maximum, then Lhe second step is to do a monotonically increasing IR,

g regression on the points Yy through M and the third step is to do a '%

. monotonically decreasing regression on the points Va1 through YN If the mode o f
¢ . »

- of yi‘ is to be a global minimun, then the second step is to do a monotonically 7]

' CA

LA

Ly
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decreasing regression on the points Y, through YM and the third step is to do a

" monotonically increasing regression on the points Ypge1 through IN- Stress is

still expressed as in equation 5.2.2-1.

Finding the mode of yi’ requires two monotonic regressions. As a side-
note, if all intermediate results in these regressions are saved, these
results being all block values for blocks 1 through the active block for each
algorithm step, then the regressions required in steps two and three are
already done and all three steps can be combined into one procedure. Lowever,
for the sake of clarity, the more straightforward three step approach will be
described here. [f the mode of yi‘ is a global maximum then a forward
monotonically increasing regression and a backward monotonicly increasing
regression are done. A forward regression is simply the regression performed
by the up-and-down blocks algorithm. In a backward regression, however, the
starting active block is YN and the active block prugresses from YN to Y,
hence the name backward. This can be accomplished by reversing the indices on
the data sets X, and Y- using the up-and-down blocks algorithm and then re-

establishing the indices. In reversing the indices the following mapping is

perf{ormed:

X ::; XN-1+1
Yy IN-i+1

In re-establishing the indices the same mapping is used again with the
provision that the index of yi‘ is also reversed. For both fcrward and backward
regresgsions the intermediate stress at each step in the algorithm must be
computed. Intermediate stress values are computed using equation 5§.2.2-1 with N
replaced by the index of the current active block. Figure 5.2.2-3 shows the
results of forward and backward regression on a data set. The curve labeled
'F' is the intermediate stress for the forward regression and the curve labeled

‘B' is the intermediate stress for the backward regression. The curve labelcd
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Figure 5.2.2-3 Stress curves for s unimodal msximum monotonic regressiop. The ;:j
curve 'F’ is the stress at each step for a foreward asscending Wl
¢ monotonic regression. The curve 'B’ is the stress at each step e
. for a backward ascending monotonic regression., The ocurve 'S' is AR
the sum of curves F and B at each step., The mode in the o
regression is the index associated with the minimum of curve 8. fi
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! 'S’ i{s the sum of the two curves 'F' and 'B'. The desired quantity, the index
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of the mode of y1°, is equal to the index of the global minimum in the curve RN
) 'S', since this is the mode for which the final stress is minimum. With the
! - * mode of yi‘ established, the forward and backward regressions of steps two and
three are computed as previously described and a value of stress for the uni-
modal regression is be computed.

! 5.2.3 Multidimensional Scaling

In the context of this study, multidimensional scaling, or MDS, is a

tool used to graphically examine the relationship between several objective and

I subjective speech quality measures. It maps similarity between quality ke

.
Teie
AR
L «
-

.
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.. R
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R

-

measures, as measured by correlation, {nto distances between quality measures f«;%

ol

as measured in an N-dimensional space. Using this technique, the relationship Qﬂ;@

! between many measures can be studied by examining a graph, as opposed to }»~!

scanning a large table of correlation values. The ©principles of
multidimensional scaling are best set forth by R.N. Shepard [5.3][5.4] and J.B.

Kruskal ([5.5)(5.6]). In order to discuss the theory of multidimensional

-
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T

scaling, meveral terms need Lo first be defined: %ffj
A

OBJECT - the thing or event to be investigated. In this study objects are " “?

l‘ - L 2

subjective or objective speech quality measures.

.,
[N 4

.
T,
..;ﬂ —— 0 a-:.—al-

PROXIMITY - also referred to as similarity, this i» a measure of the distance

between objects as quantified by the magnitude of a correlation coefficient or

et e T
L

' some other distance measure. -0
DATA MATRIX - MDS operates on proximities associated with pairs of objects. f??%
It is convenient to think of proximities among N objects as entrics In an N by f“ii
' N data matrix, where the entry in row { column j, mlj’ is the proximity of r;vg
N q
object | to object j§. I{ we assume that the measure ol proximity is a metric, -
then mlj is equal to mjl and the data matrix is symmetric. Furthermore if we f;?ﬁ
——le N
' assunic that the proximity of an object to itself {s constant for all objects, _ !
129 i
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zero for example, then the data matrix contains only (N)(N-1)/2 unique entries.
For the applications in this study these assumptions are valid, so the data
matrix can effectively be reduced to a lower triangular matrix of (N)(N-1)/2
proximities.

REALIZATION SPACE - the output of a ﬁultidimensional scaling is a table of
coordinates which locate each object in the realization space. The distance
metric in this space is Euclidean and the dimensionality of the space can be

varied by the user. The distance between objects in the realization space is a

function of the proximity associated with the two objects. The distance
between object 1 and object j in the realization space is denoted as dij.'
The dimensionality of a the realization space is an important issue. For N

objects it can be shown that the realization space spans at most N-1 dimensions
for metric scaling and N-2 dimensions for non-metric scaling [5.7]. 1f the data
is error free, then this dimensionality may be appropriate, though with noisy
data some dimensions may be accounting for noise only. Lower dimension spaces
tend to smooth out data noisc since, with fewer object coordinates Lo estimate
from the data, the coordinates have greater statistical reliabflity.

METRIC and NON-METRIC SCALING - scaling can be divided into these two broad
categories, Mapping proximities in the data matrix inte distances in the
rcalization space in general requires a transformation on the proximities. It
the function which transforms proximities to distances in the realization space
Is linear, then the scaling is metric. If the function is merely monotonic
then the scaling is non-metric. Tranaformed proximities can be thought of as
eyt imates of inter-object distances in the rcalization space. The (ransformed
proximity associated with object | and object j is denoted as dij'
STRESS - points are placed in the rcalization space such that they minimize

an error function, defined as follows:
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STRESS = |-----cc==occmmommnncann. , 5.2.3-1
N N
2 Y )
| 1=1 g=1 1 ]

STRESE measures the differences between the distance between points in the
realization space and the estimated distance between pointa as specified by the
transformed proximities. In another sense {t measures how well the dimension
of the realization space suits the data. The value of STRESS should guide the
experimenter in choosing the appropriate dimensionality for the realization

space. A rough interpretation of stress is as follows:

0% perfect
5% very good
10% good

20% fair

As an example of metric MDS, consider the data in Table 5.2.3-1 in which
proximities are actually distances, in miles, between ten cities in the United
States. MDS can be wused with a linear transformation of the proximities
(actually a simple scaling) to construct a 'map’' of the U.S. as in Figure
5.2.3-1. Since this data was measured from a very nearly two dimensional space
(the surface of United States land mass) the realization space need not be
larger than two dimensions. In this example the STRESS, or error of fit in the
realization space, would be smuli and nearly constant for realization space
dimensionality greater than one. Figure 5.2.3-1 illustrates another important
aspect of MDS: the Euclidean distunce measure used in the realization space is
rotation and reflection invariant, which means that the resultant configuration

of points can have any angular orientation in the realization space. MDS
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Table 5.2.3-1 Airline distances between ten U,S. cities [8].
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Figure 5.2.3-1 ’'Map' of ten cities in the U.S. as produced by multidimensional

scaling of the data in table 5.2.3-1,
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produces a configuration of points, but it is up to the researcher to identify
' the orientation and meaning of spacial dimensions in that configuration.

As an example of non-metric scaling, consider Figure 5.3.2-1(a). This
is a two-dimensional scaling of the similarity between parametric quality
measures in the DAM. In this scaling, parametric quality measurcs arec the
objects, and hence are represented as points in the plot. Figure 5.3.2-1(b) is
a key for identification of these points. The similarity between two measures
is represented by the proximity of their points in the plot. The functional
measure of similarity between two measures i3 simply the magnitude of the
correlation coefficient relating these two measures across the ensemble of
distortion systems in the data base. This scaling is non-metric because the
transformation of mij to yield dlj is monotonic. That is, if you were to
construct ordered pairs: (mij' dij)' and then rank the mij's in descending
order, their corresponding dij's would also be ranked in descending order. This
is the only restriction on the transformation.

5.3 Parametric Objective Measures

5.3.1 Regression Analysis

Regression analysis has been done on the subjective quality data base by
itsell to determine to what extent the most desired subjective quality,

composite acceptability, can be estimated from some subset of the remaining

parametric subjective qualities. For two reasons only a subset of the
remaining parametric qualities are considered. First, some of the subjective
qualities are general in nature, rather than specific. These qualities are

total signal or background quality, and overall intelligibility, pleasantness
and acceptability The whole motivation for this phase of the study was to
focus on narrow rather than broad quality categories, with the assumption that
these would be easier to objectively estimate. Second, it is of interest, out

of efficiency and expediency, to investigare how few of the parametric
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SYMBOL MNEMONIC QUALITY

SIGNAL QUALITY

- A SF fluttering bubbling
B SH distant, thin

C SD rasping, crackling
D SL muffled, smothered
’ E SI irregular, in.erruptad
F SN nasal, whining
G TSQ total signal quality '\:!
BACKGROUND QUALITY
: H BN hissing, rushing "‘.‘j
7 I BB buzzing, humming MM
J BF chirping. bubbling
K BR rumbling, thumping F.’
L ™BQ total background quality _‘-2
-

TOTAL. QUALITY

M Il raw or isometric intelligibility :—-—;

N P raw or isometric pleasantness ';\,‘Ei'

0] 1A raw or isometric acceptability Qf\s

! P 1 parametric intelligibility *'—'.1
Q P parametric pleasantness .-

‘ R A parametric acceptability ‘
: S CA composite acceptability : !
Figure 5.3.2-1(b) Key to symbols in Figure 5.3.2-1(a).
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subjective qualities are needed to adequately estimate composite acceptability.
Fewer terms in the model for composite acceptability means fewer objective
measures to build for each term and hence less computation in the composite
acceptability objective measure.

The model for estimating composite acceptability from the parametric
subjective qualities is identical to equation 5.2.1-2, except for these re-
definition of terms: Y, is the composite accepiability score for distortion
system i, xij is a parametric subjective quality score for distortion system i.
In all cases the regression analysis was done over the entire 1056 distortion
systems .

It should be noted that this regression analysis is simply an extraction
of the model originally used by Dynastat to compute composite acceptability
from the parametric subjective qualities. For this reason one should expect
very good regression modeling rcsults. This expectation was, in fact, realized
by the anafysis. However, good modeling results were also achieved by using
only a subset of all the parametric subjective qualities to estimate composite
acceptability, which is new and very encouraging information.

Three regression studies were run on the subjective data base. The
first represents an wupper limit on how well compcsite acceptability can be
estimated bed on all of the available information and using only linear
regression models. Table 5.3.1-1(a) lists the parametric qualities used in
this analysis. Note that total signal, total background, and parametric
intelligibility, pleasantness and acceptability were not used because these are
in fact composite qualities based on the qualities which were included in the
model . The results of the analysis, listed in Table 5.3.1-1(b), is that 99.9%
of the variability of composite acceptability was explained by the included
variables (R-square = .9990). This is nearly perfect, indicating that the

parametric subjective qualities included in the model together contain all the
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INDEX MNEMONIC DESCRIPTORS
SIGNAL QUALITY

1 SF fluttering bubbling

2 SH distant, thin gfii
3 sD rasping, crackling :
4 SL muffled, smothered :“i
5 SI irregular, interrupted ,~1
8 SN nasal, whining S

BACKGROUND QUALITY

L e

8 BN hissing, rushing

9 BB buzzing, humming
! L
Pl 10 BF chirping, bubbling "__i
. 11 BR rumbling, thumping ?1
o
TOTAL QUALITY )
Sy
13 11 raw or isometric intelligibility '#_i
14 P raw or iscuetric pleasantness :;::::;:fi
2y
15 IA raw or isometric acceptability 7‘
..
; (a) S
.E'- Multiple R .9995 Standard error of estimate .3153 ’_j
F e Multiple R square .9990 %
o R
£ Analysis of Variance o
;
O e L LR Dl R
£ Source of Sum of Degrees of Mean S
. Variation Squares Freedom Square F Ratio e
[ Regression 102252. 13 7865 . 79135. e
Residual 103. 1042 .0994 T

(b)

{

i
. Table 5.3.1-1 Part (b) shows the results of linear regression analysis with the ) j
4 . subjective qualities listed in part (a) as independent variables and composite @
acceptability as dependent variable.
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information present in the compusite acceptability quality. As stated
previously, this is to be expected since this analysis merely extracts nearly
the same model used by Dynastat to compute composite acceptability.

The second analysis was limited to using only the signal and background
qualities as independent variables of the regression model used to estimate
composite acceptability. However this analysis was slightly different in that
forward stepwise regression was used as a means of identifying the most
important of these parametric qualities. As the neme implies, stepwise
regression is a stepwise or iterative technique wused for independent variable
selection. In the first step the variable which explains the mest variation in

the dependent variable is included in the model and all model statistics are

computed. In all subsequent steps, the variable which, when added to the
current model, helps explain the most variation in the dependent variable, s
included in the model and all model statistics are computed. In this way, a

useful, though sub-optimal, ranking of the independent variables is obtained by
the degree to which the variables cortribute to the model. In addition, at
every Sstep a regression model for the included independent variables is
obtained.

Table 65.3.1-3 shows the results of this analysis. Listed are the
parametric qualities in the order in which thecy entered the model, the
multiple-R, or correlation coefficient, the multiple-R squared, or fraction of
variability explained, and the increase in multiple-R square. The results show
that two qualities dominate the rest in terms of contribution to the model.
These are SD, which by itself accounts for 43 percent of the variation of CA,
and SL which, along with SD, accounts for 66 percent of the variation of CA.
These results are not too surprising, in that the histograms (Figures 5.4.2-1
and 5.4.2-1) for thesc two qualities show a much larger variance than any of

the other parametric subjective qualities. Since SD and SL themselves have a
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Step Entered Multiple 2 Incregse
No. R R in R
1 SD, rasping, crackling .8541 .4278 .4278 -ﬂfi
2  SL. muffled, smothered .8120 .6594 .2316 L
3 SF, fluttering, bubbling .8648 .7478 .0885 o
4 BN, hissing, rushing .9039 .8171 .0692 e
...
5 P~ chirping, bubbling .9175 .8418 .0248 R
6 SI, irregular, interrupted  .9380 8798 .0380 -
.
7  SH, distant, thin .9494 .9014 .0216 AN
et
8 BB, buzzing, humming .9518 .9059 .0045
9 BR, rumbling, thumping .9524 .9070 .0011 ﬁ

Table 5.3.1-2 Results of stepwise regression. Subjective qualities are listed T
in the order in which they entered the model. At each step, the columns of :.;!

numbers show the multiple R, multiple R-squared and increase in multiple R-
squared, respectively.
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large variance, they help to explain a larger portion of the variance in
composite eacceptability. Another encouraging result 1is Lhat only seven
parametric qualities are needed, SD through SH, to raise the correlation
coefficient for the model above .90. Therefore only seven of the thirteen
subjective qualities included in the previous regression study are needed to
explain 95 percent of the variation in composite acceptability, and the
remaining five subjective qualities explain less than 5 percent of the
variation of composite acceptability. This analysis suggests that objective
measures for only seven of the parametric subjective qualities need to be
designed, since the remaining subjective qualities contribute little to the
estimation of composite acceptability.

The third regression analysis was all possible subsets analysis, done to
better support the conclusions reached by the stepwise regression analysis.
Stepwise regression is, in general, a sub-optimal method for independent
variable gelection. In a given step only those variables not yet included are
examined, without regard for the appropriateness of the variables already
included. In contrast, all possible subsets is an optimal method of variable
sciection since it examines all the independent variables at each step and
chooses that subset of n variables (n being the step number) which best
explains the variation in the dependent variable. Therefore this analysis
method will find the set of parametric subjective qualities that will yield the
best ecstimate of composite acceptability, wunder the restriction that the set
contain only n members.

The results of this analysis are listed in Table 5.3.1-3. For each
subset of size n, the table lists the corresponding multiple R squared,
multiple R and also indicates the parametric qualities included in that subsct.
In this mcthod e¢f analysis, a specific ordering of importance of parametric

qualities is more difficult than with stepwise regression. Since the regression
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Parametric Quality

Number in Subset

1234566788910

A

1 SD, rasping, crackling XXXXXXXXXX
2 SL, muffled, smothered XXXXXXXXX
4 BN, hissing, rushing XXXXXXX
8 SI, irregular, interrupted XXXXXX
5 BF, chirping, bubbling XXXXXX
4 SH, distant, thin XXXXX
3 SF, fluttering, bubbling XX XXXX
8 BB, buzzing, humming XXX
9 BR, rumbling, thumping XX
10 SN, nasal, whining X

Number in Subset Multiple

| RZ R

1 0.427 0.653
2 0.659 0.812
3 0.747 0.864
4 0.816 0.903
5 0.866 0.931
8 0.885 0.941
7 0.801 0.949
8 0.905 0.951
9 0.908 0.952
10 0.908 0.952

Table 5.3.1-3 Results of all possible subsets regression analysis with the ten
signal and background parametric qualities as dependent variables and composite
acceptability as the independent variable. The columns of X's indicates the
qualities included in the regression model for a given number of dependent
variables (as indicated by the row of numbers above). For comparison, the
colunn of numbers on the left is the order in which the parametric qualities
entered the regression model in stepwise regression analysis. Below are listed
the multiple R and multiple r squared for each subset of size n.
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model is totally re-evaluated for each subset size, there i{s no one order of
variable entry. The table lists parametric qualities in approximate order of
entry under all possible subsets regression, and also indicates, by the numbers
in the leftmost column, the order in which the qualities entered under stepwise
regression. The most notable difference between the two types of analysis
céncerns the quality SF. Under stepwise regression this variable entered in
step three, where under all possible subscts SF entered in subset three,
dropped out in subset five and re-entered in subset seven. Therefore stepwise
analysis overemphasizes the Iimportance of SF. However, for the remaining
parametric qualities the two analysis methods yield quite similar results.

Two conclusions can be drawn {from the results of regression analysis on
the subjective data base. First, that parametric subjective qualities can be
used to construct a model which provides excellent estimates of subjective
composite acceptability. And second, that some subset of these parametric
qualities can be used to construct a model which provides estimates of
composite acceptability which are nearly as good as estimatos made by the full
model. (Given these conclusions, it is then highly desirable to construct
¢bjective measures which provide good estimates of the parametric subjective
qualities, since these objective measures, combined into one large model, can
be expected to provide improved estimates of subjective composite
acceptability.

5.9.2 Multidimensional Scaling Analysis

Multidimensional scaling was done on the subjective data bame to qualify
the perceptual relationship between the parametric subjoctive qualities and the
overall subjective qualities, and in particular composite acceptability.
Figure 5.3.2-1(a) shows the results of a multidimensional scaling analysis donc
on the subjective data base. All nineteen subjective qualitics were included

in the scaling, and Figure 6.8.2-1(b) lists the key for identifying the
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subjective qualities in the plot. For this analysis, the similarity between
subjective qualities was equal to the magnitude of the correlation coefficient
between the two qualities as computed over all the distortion systems in the
data base. A descending monotonic regression was done on the similarities, so
that a similarity nearly equal to 1.0 mapped into a distance nearly equal to
zero. Because the transformation from similarity to distance was monotonic,
the scaling was non-metric.

The analysis was done for several realization space dimensions. Flgure
5.3.2-2 shows the decrease in configuration stress for inereasing
dimensionality. This curve docs not have a distinct ‘'knee’, where the best
tradeol{ belween stress and dimensionality would occur, but a realization space
of dimension four does yield a stress of 6 percent, which indicates a good fit.
The plot in Figure 5.3.2-1(a) is for a realization space of only two
dimensions, with a stress of 16.9 percent. This is rather high, indicating
only a fair correspondence between the plot and the actual correlations between
subjentive qualities. Even so, the plot {s easy to comprechend and the axes of
the plot are amenable to perceptual interpretation. These two facts argue for
vusing a two rather than four dimensional realization space, despite its high
stress value.

The plot shows composite acceptability near the center of the space. The
other high lovel qualities, intelligibility, pleasantness, and acceptability,
arc centered closely around composite ecceptebility indicating that qualities
in the conter of the realization space are general in nature. The loft side of
the rcalization space contains most of the signal qualities while the right
side contains the background qualities, suggesting thal the horizontal axis
moasures a sigaal versus background quality degradation dichotomy. Similarly,
the bottom of the plot contains qualitics whose exemplars arc mostly fluttering

or interrupted, while the top of the plot has qualities which exemplify
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primarily noisy distortions. Therefore the vertical axis seems to measure a
noisy versus fluttering quality degradation. Finally, total signal quality and

total background quality are both nearly centered within their respective

* signal or background parametric qualities.

One can conclude from this multidimensional scaling that the parametric
qualities in ths subjective data base do, in fact, measure different subjective
qualities since all the parametric qualities are widely spaced in ‘the
realization space. Parametric qualities closely spaced in the realization space
would indicate a large degree of redundant information. Another point is that,
in two dimensions, we can associate perceptual qualities with the axes of the
realization space. And finally, we note that composite acceptability is nearly
in the center of the realization space, which agrees with the fact that it is
an overall quality measure, and does not measure only a specific perceived
quulity as do those measures located near the edges of the realization space.

5.4 Parametric Objective Measures

This section of the report discusses specific objective measures which
have been used to estimate paramctric subjective quality. The approach used in
designing an objective measure was to first understand the subjective quality
it must estimate. The subjective scores provide a key to this understanding.
Distortions which register a subjective quality score widely deviating from the
average are exemplary of that quality, and hence provide insight into the
physical or objective nature of that subjective measure. This approach to
understanding the meaning of subjective quality scales will be discussed in
detail for each of the parametric qualities identified as most important by the
regression analysis in section 5.3.1. Before proceeding, however, the meaning
of the term ‘distortion’ should be clarified. In the distorted speech data
base, each distortion is comprised of four talkers witn six distortion levels

for each talker (Chapter 2). In the following analysis these 24 distortion
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systems are grouped together and are referred to simply as a distortinn.

5.4.1 SD: Rasping. Crackling

This subjective quality describes the degree to which speech is rasping
or crackling. Table 5.4.1-1 lists the distortions which excite the system
distorted scale. For each distortion the minimum, maximum and range of quality
scores associated with that distortion are listed. The degree to which a
distortion exemplifies a parametric quality is related to either the range, or
spread, of the distortion on the parametric quality scale or to the maximum
quality score on that scale. The latter case occurs when a distortion does not
have a large range, but instead scores uniformly low on the subjective quality
scale, and therefore indicatives that the entire distortion exemplifies that
quality. The list in Table 5.4.1-1 is ordered according to the range of the
distortion quality scores so that, in general, the distortions most exhibiting
the subjective quality fall at the top of the flist.

The dominant physical or objective characteristics the distortions in
Table 5.4.1-1 have in common is that they involve nonlinearities which distort
the waveform and therefore smear energy across the spectrum. This smearing is
particularly noticeable at higher frequencies where the speech level is
naturaliy lower and more easily dominated by noise from nonlinearities. Also
present are additive noise distortions, which bolster the hypothesis that
noise, either correlated to the speech power and arising from nonlinearities or
uncorrelated and arising from an additive process, is the objective character
of this subjective quality.

As mentioned in section 5.3.1, system distorted accounts for a very
large fraction of the variance of composite acceptability, some B0%. This is
principally because of the large number of distortions which excite the system

digstorted scale. The histogram in Figure 5.4.1.1 gives another perspective on
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DISTORTION MAX MIN  RANGE ;5
. ' center clipping 83.90 50.70 33.20 Effi

CVSD 865.40 53.40 32.00 :
ADM 85.40 57.70 27.70 .
peak clipping 81.50 65.70 25.80 %%%3
quantization 71.90 47.80 24.10 5 i
400 - 800 Hz noise 83.40 61.80 21.60 \}
1900 - 2600 Hz noise 85.10 65.00 20.10 "—j
1300 - 1800 Hz noise 86.80 68.60 18.20 1
BD 400 - 800 79.70 61.70 18.00 . o
800 - 1300 Hz noise £5.80 68.90 16.90 "";
APCM 77.70 60.90 16.80 3
BD 2600 - 3400 83.30 68.10 15.20
2600 - 3400 Hz noise B4.40 69.40 15.00 q
LPe 83.00 69.50 13.50 ]
broudband additive noise 85.10 73.90 11.20 S
ECHO 87.60 76.40 11.20 "'“j

5 0 - 400 Hz noise 86.20 75.10 11.10 ]

;: lowpass filtering 85.10 74.10 11.00 éé:ﬁ

:'_'! BD 100 - 400 91.60 80.80 10.80 -,j

ET:: VEV 7 76.90 66.20 10.70 i

ADPCM 78.50 67.90 10.60 2

¥ PD 1900 - 2600, radial 87.20 76.80 10.40

& BD 100 - 3500 73.40 63.50 9.90

g

?  Table 5.4.1-1 Distortions which most prominently excite subjective quality

4 SD, listed in order of decreasing significance.
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Figure 5.4.1-1 Histogram showing the value of subjective quality SD (x-axis)
vs, the frequency of occurance of the SD subjective quality
value (y—axis).
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this issue. The horizontal axis is the SD subjective quality score. A
subjective quality of 85 is very good, or nearly complete absence of the
quality SD, while a 20 is very poor, or highly distorted. The vertical axis is
the frequency of occurrence of a given value of the SD quality score: when taken
over all speakers and all distortion systems in the data base. A case by case
examination of the data in this histogram would show that points which fall in
the left tail of the distribution are members of the distortions listed in
Table 5.4.1-1.

Research efforts up to this point have been wunable to identify a
good measure for this subjective speech quality. Efforts to measure the
energy of the noise resulting from the nonlinear speech distortions have
been largely unsuccessful because the noise energy is dominated by the
speech energy. Because of this, calculating the noise power in a
straightforwvard manner, such as by taking the difference between the power
spectrums of the distorted and the original speech, is extremely prone to
error.

Experiments thus far, however, indicate that a good measure for
estimating SD might be some function of the difference between the
level of the noise {loor and the level of the excitation spectrum in a
voiced segment of the distorted speech spectrum. The spectrum of an
undistorted voiced speech frame is characterized by an impulsive spectrum
due to the voiced excitation with a slowly varying envelope due to vocal
tract filtering. The quantity to be measured. which could be called
correlated SNR, is the difference between the level of a pitch peak and its
adjacent valley, where both levels are measured on a log scale. The
motivation for mecasuring this quantity is that speech which is distorted by
a nonlinearity will have a slightly smeared spectrum and hence will have the

difference between these two levels diminished. An objective measure for
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estimating SD could be ©based on the correlated SNR of the distorted
speech, summed over all speech frames, normalized by the correlated SNR of
the original speech, also summed over all speech frames.

5.4.2 SL: Muffled, Smothered

This subjective quality describes the extent to which speech is muffled
or smothered. Table 5.4.2-1 lists the distortions which excite this subjective
scale. Most prominent of these is the low vass distortion which, since it
eliminates high frequencies, fits well with the subjective quality of muffled.
The low band bandpass distortions also produce a similar muffled quality. The
other distortions {fit better with the subjective quality of smothered. The
highpass and the high bands of the bandpass bandlimiting distortions eliminate
or diminish speech energy in the middle of the zero to 3600 Hz speech band
which, produces the perceptual effect of smothered. The two waveform coders,
CVSD and ADM also diminish the mid-band energy of the coded speech with respect
to the original speech and hence produce the same smothered effect. The
remaining two distortions listed in Table 5.4.2-1 are narrow band additive
noise, both injecting noise in the low to middle part of the speech spectrum.
These distortions can be thought of as smothered in that they produces a noise
masking of the speech.

Like the subjective quality SD, SL has a relatively diverse mix of
distortions which excite it. There are, however, far fewer types of
distortions which produce severe SL quality degradations. This can be seen
from the relatively small number of entries in Table 5.4.2-1 and from Figure
5.4.2-1. This Figure shows the frequency of occurrence of a specific level of
the quality SL across the ensemble of all distortions. It is strikingly
different from the correspcnding Figure for SD in that the main lobe for

quality SL is narrower and its left tail is longer and lower. This indicates
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DISTORTION MAX MIN RANGE

lowpass filtering 83.20 46.30 36.80

s CVSD 87.50 62.40 25.10

= bandpass filtering 77.60 53.40 24.20

ADM 87.10 68.30 18.80 :{

- center clipping 84.10 68.70 17.40 "‘"';

- highpass filtering 79.20 862.40 16.80 L
400 - BOO Hz noise 85.50 69.20 16.30

@
[T WO, ) RPN

800 - 1300 Hz noise 86.20 73.00 13.20

Table 5.4.2-1 Distortions which most prominently excite subjective quality
SL, listed in order of decreasing significance.

Multiple R .7342 Standard error of estimate 3.5679
i‘! Multiple R square .5301
-

Analysis of Variance

e atr e e e s _—_——-— -

e
@

L]
N

1
Y
]
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.'_,‘
e

1

"

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F Ratio
B Regression 15142. 14 1081. 84. X
= Residual 12948. 1017 12. i

Table 5.4.2-2 Summary of regression model used to estimate subjective quality
® SL.
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that the same range of quality degradation is provided by fewer distortion
types.

There are primarily two types of distortions which excite the subjective
scale SL. These are bandlimiting distortions and narrowband noise distortions.
This suggests that a composite objective measure would be most appropriate for
tracking subjective quality SL. The objective measure tried has, for its first
component, a frequency variant spectral distance measure and, for its second
component, a frequency variant noise measure. An important point as yet
unment i oned concerning SL is that the bandlimiting and additive noise
distortions which exemplify SL are time invariant systems. Therefore their
distortion characteristics should be recoverable from the time averaged
spectrum of the reference and distorted speech waveforms. The method used to
estimate the spectrum of the waveforms was to pass the waveform through a

filter bank and compute the mean square value of each filter output for cach

utterance. This is the same critical band filter bank used for studying aural
based objective measure in Chapter 4. In this way an estimate of the power in
frequency bands for an entire utterance is obtained. The power in bands could

be combined, as appropriate, to provide coarser estimates of the reference and
distortion spectrum. Broader bands were found to produce more easily
interpreted objective measures.

The spectral distance objective measure has the following form:

01(s,d.k) = log, o MIN( MAX(----------- ,TH . ), TH ) ) 5.4.2-1

In the preceding equations, V(.,s,d.k) and V(.,s,&,k) are the mean square

values in (he band k for the distorted and reference waveforms, respectively.

Again, this average is taken over the entire utterance. Thm. and T”max are
parameters of the measure. The objective variables O01(s,d,k) were then
153
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transformed into a new distance variable, O1°(s,b,k), which has coarser
frequency resolution. Instead of having 25 bands O1°* had only five bands, and

is obtained by summing O1{s,d k) as follows:

01*(s,d.k) 01(s.d k)

Band No. Band No.
1 1 - 5
2 6 - 10
3 11 - 15
4 16 - 20
5 21 - 25

In addition, a monotonic and uni-modal regression was done on the
function Ol(s,d,k) and stress for the functional forms lowpass, highpass,
bandpass and band reject was computed. Computing stress for the functional
form of lowpass requires computing a monotonically increasing regression,
highpass requires a decreasing regression. Bandpass requires computing a global
maximum uni-modal regression and band reject requires a global minimum uni-
modal regression. The motivation for computing these stresses was to measure
the extent to which the distortion applied to the speech had one of these
bandlimiting functional forms. The total number of independent variables wuscd
this objective measure was seven: {ive spectral distance variables for five
frequ-ncy bands and two stress variables, one for the functional form lowpass,
represented as 01*(s,d,6), and one for bandpass, represented as O01*(s,d,7). The
remaining stress variables did not significantly contribute to the regression
model.

The second part of the composite measure is an additive noise measure.

The functional form of this measure is as follows:

02(s.d k) = loglo( (1/NF) 2 V(f,s,d, k) +1) 5.4.2-2
f
S
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where IS are all silent frames in the reference utterance and NF is the number

.
-
)
)

N of silent fremes. Like the spectral distance measure, the 25 bands in

1

'
’

02(s,d k) are combined to form five bands in a new additive noise measure,
02*(s,d, k). The {five variables in this measure are the noise power in the
extended bands as measured during intervals of known speech inactivity in the
distorted signal.

The two measures were combined in a linear function with weights

determined by regression analysis. The resultant measure was formulated as:

5

7
OSL(s,d) = ﬁo + 2 BleI‘(s.d.j) +

B2.02¢(s,d,j) 5.4.2-3
i=1 =1

where OSL(s,d) represents the objective estimate of the subjective quality SL.
Teble 5.4.2-2 shows the results of the multiple linear regression
analysis used to formulate OSL' The performance of this measure is only fair,
as its correlation with SL is .74, which corresponds to an explanation of only
55% of the variability in the subjective quality SL. In all probability this
poor performance is due to the difficulty of modeling the diverse mix of
distortions which excite SL. This was, never thc less, the best objective

measurce for this parametric quality.

54.3 SF: Fluttering, Bubbling

This subjective quality quantifies the degree to which the speech signal
has a fluttering or bubbling quality. Teble 5.4.3-1 lists those distortions
® which excite the SF subjective scale. The dominant distortion in this table is
by far pole distortions, The controlled pole distortions explicitly alter the
original speech pole locations, while the parametric coder distortions based on

an all-pole vocal tract model distort the speech pole locations in a more
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SF fluttering bubdbling

DISTORTION MAX MIN RANGE

interrupted, period = 1024 85.50 50.80 34.60 . l,.',%

| , 85.30 51.10 34.20

AR o]

PD 400 - 800, {raquency 856.80 52.60 33.20

!
A . LM.AA.MLM

interrupted, period = 300 80.90 48.70 32.20 j
L VEV 13 84.90 60.70 24.20 : ﬁr
& VEV 7 83.30 60.30 23.00 ]
H PD 1300 - 1800, frequency 87.90 66.30 21.60
FD 400 - 800, radial 83.60 63.90 19.70
E APC 86.80 67.30 19.30 3
| BD 400 - 8900 83.20 64.40 18.80 r~
! ECHO 88.60 70.80 17.80 1
5 BD 2600 - 3400 79.80 62.90 16.90 1
F BD 100 - 3500 80.40 63.00 16.50 '1
:C PD 800 - 1300, frequency 84.10 68.1G 16.00 | ?
- PD 000 - 400, radial 88.60 72.90 15.70 }
PD 1300 - 1900, radial 88.80 73.10 15.50 -w.q
FD 2600 - 3400, radial 87.50 72.60 14.90 73
center clipping 85.80 72.10 13.50

" j.a:.;:x_'_'a

| . " '.‘:'...'.
RO SRS

)

Table 5.4.3-1 Distortions which most prominently excite subjective quality
SF, listed in order of decreasing significance.

[}
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complex way through modeling errors and parameter quantization. Two prominent
exceptions are the first and fourth table entries: the interrupted distortions.
These are understandably perceived as fluttering because their {nterruptions
are periodic. The presence of these interrupted distortions in Table 5.4.3-1
suggests that it 1is the periodic quality of the controlled and coder pole
distortions which correlate most highly with subjective {fluttering and
bubbling. |

Though it is clear that the source of degradations in the subjective
quality fluttering or bubbling is primarily due to LPC pole position errors,
this research was unable to identify a good measure for such errors. The
interrupted component of SF could clearly be estimated by the elements of the
SI objective measure, but this still leaves pole position errors or, more
precisely, formant frequency and bandwidth errors, to be estimated. Further
experimentation needs to be done to determine the degree to which
formant frequency and formant bandwidth are correlated to SF.

In order to perform such experiments one needs a means of determining
formant frequency and bandwidth for a given speech frame. The vocal tract
system function as derived from LPC analysis {s a good starting point for
finding these parameters. The difficulty in processing this smoothed
spectrum is that formant frequencies correspond to local maximums of the
spectrum and are therefore hard to track. One must estimate and in some
sense remove the global spectral tilt before attempting to cstimate
formant frequencies. Once the formants arc¢ known, calculating their
bandwidths is rclatively straightforward.

Once formant frcquency and bandwidth can be reliably estimated,
some function of the degree of variability of thesc parameters would seem
to be a good physical correlate to subjective fluttering. One

possibility is to match the [first three formants in the original and the
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Figure 5.4.3~-1 Histogram showing the value of subjective quality SF (x-axis),
vs, the frequency of occurance of the SF subjective quality
velue (y—-axis).
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" SN,
:2. - a
4 distorted speech frames and to calculate the variance ol the difference -I.I

. between the distorted and original formant frequencies for each of the three o

pairs. The variance would be computed over the set of all speech frames. The
] . same calculation could be done for formant bandwidth. These six objective -
. measure variables would then be the basis for an objective measure for

estimating SF.

i 5.4.4 BN: Hissing, Rushing ::}
s This scale specifies the extent to which the background of the ;}ii

distorted signal has a hissing or rushing quality. Table 5.4.4-1 listy those
l distortions which most excite the BN subjective scale. This scale is in T

contrast to the ones discussed thus far in that a very homogeneous set of

controlled distortions excite this subjective quality, namely additive noise .‘{Q

-t
-
1]
[

distortions. The middle frequency narrowband additive noise distortions have

the greatest perceptual impact, with the broadband additive noise being

perceived as almost the same degree of distortion. At the bottom of the table ;ib;
. is quantization distortion which is not an anomaly since, for medium to fine 5;4
“ quantization levels, the quantization noise is nearly uncorrelated with the e

signal and is understandably perceived as a background process.
Q From the evidence of the distortions which excite the BN subjective .
scale, a function which measures additive noise would bpe an appropriate

objective measure for this scale. The objective measure used is that of

'a
A mL
,
-

equation §.3.2-2, but here it is used by itself to estimate BN. The measure AT
02(8,d.k) is transformed into 02°¢(s,d k) in order to consolidate the number of T

bands. The transformation is as follows:

02¢(s.d, k)  02(s,d.k) -
Band No. Band No. L
1 1- 5 )
2 6 - 16
¢ " Note that bands 17 through 25 were not used in this measure. Tue objective {_!
159 -
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BN hissing, rushing fifg

.
l DISTORTION MAX MIN  RANGE :;:
: 800 - 1300 Hz noise 80.40 49.30 31.10 e
broadband additive noise 83.40 54.00 29.40 j.

ﬁ 400 - 800 Hz noise 79.10 50.40 2B.70 '__j
- 0 - 400 Hz noise 85.80 66.40 19.40 :
1300 - 1900 Hz noise 82.10 69.60 12.50 ':'
i 2600 - 3400 Hz noise 87.20 74.80 12.40 **;
g 1800 - 2600 Hz noise 84.00 72.80 11.20
§ quantization 85.30 75.60 9.70 .

}! Table ©65.4.4-1 Distortions which most prominently excite subjective quality ﬁT!
. BN, listed in order of decreasing significance. )

Multiple R .9138 Standard error of estimate 2.3199 :74
Multiple R square .8348 -

SR IR

Analysis of Variance

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio
Regression 28598. 2 14299. 2656 .
Residual 5687. 1053 5.
. -
- Table 6.4.4-2 Summary of regression model used to estimate subjective quality f_f
BN. o
] "~
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final objective measure used to estimate BN was then:

n NN

- . i .3.3-1
The performance of this measure is extremely good. The objective
mcasure results are shown in Table 5.4.4-2. The primary reason for such good

performance, correlation of .90, is that all distortions which excite BN are
very similar and hence can be modeled well as a group. Another reason is that
there are relatively few distortions which excite BN, as can be seen from the
narrow central lobe and the low left tail of Figure 5.4.4-1. This means that
the regression model need only account for the variance of these few
distortions, and can approximate the quality scores of the other distortions
with a constant. Of all parametric objective measures studied, this measure
was by far the most successful.

5.4.5 BF: Chirping, Bubbling

This subjective quality quantifies the degree to which the speech
background has a chirping or bubbling quality. Table 5.4.5-1 1lists those
distortions which excite the BF subjective scale. This scale is very similar to
SF, or signal fluttering and bubbling. The principal differences are, first,
that interrupted does not excite BF where it was at the top of the list for SF.
This is understandable =ince an interruption of the speech waveform is a
distortion entirely associated with the speech signal and produces no spurious
or uncorrelated background distortion. The second difference is that high band
narrowband noise distortions excite the BF scale, where they did not excite SF.
These distortions are most likely perceived as chirping background distortions.
The rest of the diclortious lisicd in Table 5.4.5-1 are for the most part the

same distortions associated with SF, listed in Table 5.4.3-1. Therefore an
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Y
BF AN
chirping, R
bubbling L
DISTORTION MAX MIN  RANGE {ij&;
PD 1300 - 1800, radial 85.70 54.40 31.30 -
PD 800 - 1300, frequency 88.40 57.20 29.20 fﬂ;
LPC 85.10 56.00 29.10 e
PD 1900 - 2600, radial 85.10 57.90 27.20 —
PD 400 - 600, rad’al 85.30 59.20 26.10 :
PD 400 - 800, frequency 85.60 59.80 26.00 Tﬁfi'
PD 000 - 400, radial 85.20 59.60 25.60 5;*'
PD 800 - 1300, radial 87.50 65.90 21.60 ??
PD 1300 - 1900, f{requency 86.90 66.30 20.60 -
VEV 7 77.40 59.00 18.40 el
VEV 13 76.20 59.90 16.30 o
PD 26800 - 3400, frequency 88.70 70.70 18.00
PD 2600 - 3400, radial 90.00 74.60 15.40 ?Z}"
APC 84.40 69.10 15.30 “E
PD 1900 - 2300, frequency 87.50 72.30 15.20 ggft
PD 2600 - 3400, frequency 87.50 73.80 13.70 oo
BD 2600 - 3400 83.60 70.80 12.80 -
2600 - 3400 Hz noise 85.10 72.70 12.40 féiz
BD 100 - 3500 81.80 69.80 12.00 -
1900 - 2600 Hz noise 83.60 71.80 12.00 i é;
BD 400 - 800 83.50 71.80 11.70 . :;
1300 - 1900 Hz noise 86.40 74.70 11.70 T
BD 1300 - 1900 83.00 71.90 11.10 ;il;"
quantization 85.10 74.10 11.00 Efﬁf
BD 800 - 1300 81.60 70.80 10.80
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Y

objective measure for estimating BF should be similar to a measure for SF.
Referring back to the multidimensional scaling of the subjective data base,

Figure 5.3.2-1, one can see that SF and BF are both at the bottom of the plot

and are rather close together, confirming the fact that the two quality scales

P L
R o
N Sl e

. o I RCIRN

detect perceptually similar distortions. :fﬁé

This research was unable to identify good objective measures for BF. J?
This is largely to be expected since SF was also difficult to ~-€
objectively estimate. The same insight into objective measures for SF, as jié

'3

discussed in section 5.4.3, largely holds true for objective measures for BF.

b

O L
o~ .
N . f
P L .o .
e .‘.
} s tamr %o I

The primary difference is that objective estimates of interrupted are not
needed for estimating BF while objective estimates of background noise are.

The latter objective estimates are discussed in section 5.4.4.

| ST

5.4.8 SI: lrregular, Interrupted

This parametric quality scale describes the degree to which the speech

TR
L e
N ) .

L
e,

signal is irregular and interrupted. Table 5.4.6-1 lists distortions which

..i .

PA [ 0
PRSI INS WPy .

excite this subjective scale. The most prominent distortion is the slow
periodic interruption, with the {ast periodic interruption falling in the

middle of the table. These two distortions certainly produce perceptually

K

interrupted speech. It is difficult to find an objective quality which is

.‘.._.
e

fr fe T

W |

common to the remainder of the distortions which excite SI. They most likely

excite the subjective quality irregular, rather than interrupted. The remaining

5
A

- . r :
ERR)
o )

;é distortions are not totally disjoint, however. Both APCM and ADPCM excite SI, -
E;: and the two highest bands of the narrowband additive noise excite SI. Several -SE
i-l pole distortions also excite SI.

i

E’ Since interrupted is the most important aspect of the SI scale and since -
E%' this quality is easy to model objectively, the measure used for estihating Sl

Ei: was designed to respond only to interruptions of the speech waveform. In

.o

particular the average number of consecutive frames for which the distorted
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S1 irregular, interrupted

DISTORTION MAX MIN
interrupted, period = 1024 87.90 38.
ADM 91.00 49.
2600 - 3400 Hz noise 87.10 862

ADPCM 85.00 60.
center clipping 87.80 83.
interrupted, period = 300 86.80 66.
APCM 85.20 65.
ECHO 89.80 78.
PD 800 - 1300, frequency 89.50 786.
PD 1900 - 2600, radial 89.90 77.
PD 000 - 400, radial 89.60 79.
PD 1900 - 2800, frequency 89.20 79.
1900 - 2600 Hz noise 87.10 78.

Table 5.4.6-1 Distortions which most prominently excite subjective

SI, listed in order of decreasing significance.

RANGE
40 49.50

80 41.40

.50 24.60

50 24.50
90 23.70
20 20.60
10 20.10
20 13.70
50 13.00
80 12.10
10 10.50
30 , 9.90

70 8.40

Multiple R .8483 Standard error of estimate

Multiple R square .7198

Analysis of Variance

Source of Sum of Degrees of

Variation Squares Freedom
Regregssion 17454. 4
Residual 6802. 1003

Table 5.4.6-2 Summary of regression model used to estimate

Sl.
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speech energy was either below a specified threshold or above the threshold is
measured as a gauge of interruption. The measure is best expressed wusing

intermediate variables follows:

log,o( ( (1/FL) 2 X(m,s.d) )%
RATIO(f,8,d) = ~--ccceccmoime et e cceceameeeee 5.4.6-1

log,,( ( (1/FL) 2 X(m.s,0) )23
m
t

ON(s,d) = Average run length of frames for which

(RATIO(f,s,d) > TH) 5.4.8-2
p - OFF(s,d) = Average run length of frames for v ch
[ - (RATIO(f.s.,d) < TH) 5.4.6-3
) O(s,d,1) = OFF(> ') 5.4.8-4
‘-
< OFF(s,d) —
- 0(8,d,2) = =-cccmmcccmonnnnan- 5.4.8-5 ol
(ON(s,d) + OFF(s,d))
, 0(s,d,3) = O(s.d.1) 5.4.8-6 S
I 0(s,d,4) = O(S,d,2) 5.4.8-7 _.1‘
e
[ 4 ey
[ OSI(s,d) = Bo + EB.O(s.d.j) 5.4.8-8 T:I'_"_.]!
"‘ )-‘1 ] [N |
l‘ L
T
Parameters FL and TH can be varied as desired to alter the measure. Parameter 1
FL is the number of samples in a frame of speech and parameter TH specifies the \h1
i.. threshold betwcen objectively interrupted and non-interrupted speech. In the e
a o
F' fornula apecifying RATIO, m, is the index of the speech samples comprising ,;
| ~-’1
I‘- {rime . The objective measure variables are specified in equations 5.4.6-4 T
" through 5.4.6-7. Note that the last two objective variables are simply the ' .‘
-1
first two objective variables squared. Thercfore the [inal objective mecasure

aprerfied in equation 5.1.6-8 is actually a multiple lincar and polynomial

'. regression equation.
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The results of using regression analysis to find the best estimate, OSI'
of quality SI are shown in Table 5.4.6.2. The measure performed reasonably
well, as measured by a multiple R of .85, with the restriction that not all the
distortions were included in the anaiysis. Specifically, ADPCM, APCM and ECHO
were not included in the analysis. ECHO was excluded because it was not
representative of typical speech coder distortions. However, ADPCM and APCM
were excluded because their distortions were not being modeled well by this
objective measure. Leaving them out greatly improved the correlation with SI.
As mentioned previously, these two coder distortions most likely produce a
subjectively irregular distortion. This is, admittedly, a rather major
shortcoming of this objective measure, but a future composite measure made up
of this measure and another measure which does track perceived irregularity

would rectify this deficiency.

5.4.7 SH: Distant, Thin

This last subjective quality measures the degree to which the distorted
speech sounds distant or thin. The distortions which most dramutically excite
this parametric quality scale are bandlimiting distortions, specifically
highpass and bandpass distortions. These two distortions are ordered one nnd
two in Table 5.4.7-1. For the higher bands, the bandpass filtering is very
similar to highpass filtering so it is reasonable that these two distortions
are grouped ‘together. They indicate that highpass filtering is the most
impo. iant objective correlate to speech being perceived as distant and thin.
Two seemingly out of place distortions found in Table 5.4.7-1 are CVSD and
lowpass filtering. On closer inspection CVSD does in fact produce a
bandlimiting distortion which slightly decreases the cnergy of specech in a
broad band centered at approximately 2000iiz. So the only feature thesc two
distortions ha in common is that they both diminish apeech energy in mid

band, although lowpasy [iltering e¢liminates irtually all out of band encrgy. A
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SH distant, thin

- DISTORTION MAX MIN  RANGE X
highpass filtering 84.70 54.20 30.50
bandpass filtering 85.00 60.60 24.40 -4
0 - 400 Hz noise 86.90 75.40 11.50 R
pSy
CvsD 80.30 79.30 11.00 RO
sad
lowpass filtering 87.90 78.00 98.90 <%
peak clipping 87.10 79.80 7.50 ;
SRSE
Table 5.4.7-1 Distortions which most prominently excite subjective quality »-u‘j
SH, listed in order of decreasing significance. __.,:!5
)
.t
S
..
]
o
Multiple R .8540 Standard error of estimate 2.4545 ?;,.!
Multiple R square .7283 .’_-'.f-j
R
Analysis of Variance e
.................... e
- A
Source of Sum of Degrees of Mean
Yariation Squares Freedom Square F Ratio
. Regression 17023. 8 2837. 470.
:‘j. Residual 6319. 1049 8.
,_. Table 5.4.7-2 Summary of regression model used to estimate subjective quality -~~.€
[ S}l- to :!‘
|
r 3
| e
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?ﬁ possible conclusion is that like SL, SH is correlated to a decrease in mid-band ?f;
Zfr speech energy. Other distortions which excite SH are peak clipping and the 33%
;J lowest band of narrowband additive noise. Peak clipping smears energy across i%i
a; the entire spectrum which is perceived primarily as high frequency distortion ?f%
B due to the low level of speech energy at high frequencies. Therefore these two fié
t, distortions produce noise at opposite ends of the spectrum. This effect may be _E;
correlated to the quality distant and thin. :;g

The objective measure used to estimate SH concentrated on the principle ;E;

objective feature of SH which is highpass filtering. The objective measure is ;fé

{

a spectral distance mcasure which is identical to the one used to estimate SL,
specified in equations 5.3.2-1 and including the subsequent transformation to

reduce the number of bands to five. The objective distance variables are

RY
-

combined in a regression equation for estimating SH as follows:

T Y Y Y
el .
.
]
]

5

Ogyy(s.d) = By + j§1330°("d'j) 5.4.7-1 =

v “:Y.

v

Table 5.4.7-2 shows the results of this analysis. Performance for this measure

was Significantly better than for the measure which estimates SL. For this _i

measure a correlation of .85 my obtained. This is primarily due to the fact

IR (O
F o
!
-

that the distortions which produce most of the variance in SH, highpass and

A ar i

r? bandpass filtering, are relatively homogeneous and therefore can be effectively ;_!
?k modeled.

P

L 5.5 Discussion

Ll In the previous section we have presented four parametric objective ::i
E mcasures. The performance of these measures range I(rom very good (a

; correlation ol 0.90 for DN) to fair (a correlation of 0.74 for SL). Though

TI these results are quite good, they are more remarkable because the : .f!
. 172
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objective measures estimated subjective quality over the entire distorted
data base, (with the exception of OSI') This is encouraging because it
indicates that these objective measures are applicable to a broad range
of speech distortions.

Objective measures with similar performance could not be found for
subjective qualities SD, SF and BF, though the probable form of measures }or
estimating these subjective qualities was discussed. Further analysis is
necessary to better understand the physical manifestations of these perceptual
qualities before good measures for them can be designed.

In designing each parametric objective measure, we have attempted to
buiid regression models in which all of the regression weights |have
an intuitively satisfying physical interpretation. The ability to assign a

meaning to the regression coeofficients is a check on the appropriateness of

the regression model. More complex models with relatively meaningless
regression weights have been avoided. Even though such models are able to
provide improved performance, it is suspected that they do so by accounting

for variations in the noise of the data and do not provide improved
modeling of the subjective speech perception process.

In some cases the parametric objective measure results may have

utility by themselves. For example, a low score on the BN objective
measure may indicate excessive additive nnise distortion in the
speech system, while a low score on the SF objective measure may indicate

insufficient quantization levels in the vocal tract parameters of an LPC based
speech coder. In general, the parametric measures yield specific information
which may Dbe extremely wuseful in diagnosing the cause of voice quality

degradation in a communications system.

However, for verification of overall performance of a speech
communication network, an objective measurc for composite acceptability
173
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is needed. Such a measure can be used in the design of speech communication
systems and in the field maintenance of speech systems. Given that we have
a full set of parametric objective measures which provide good estimates of
SD, SL, SF, BN, BF, SI and SH, the essential information in these parametric
measures, the objective measure variables, can be used to build a measure of

composite acceptability. The {form of the objective measure would be as

follows:

m
OCA=BO+§

0, . 5.5-1
j=1 Bj 1,)

where i1 is an index over speakers and distortion systems and j is an index

over the included objective measure variables. The variables oi,j are
the same objective variables used in constructing the parametric
measures, though they are now lumped together in a single regression model
and each 1is weighted by a Bj unique to this new model. A problem with

equation 5.5-1 is that it models CA as a linear combination of the
objective measure variables. This inadequacy can be lessened if interaction
terms, or product terms involving the objective measure variables,
arz added to the model.

The key to designing a good measure for composite acceptability
is to represent all gignificant perceptual dimensions of acceptability
in the model. This point was illustrated by the multidimensional
scaling analysis of the subjective data base in section 5.3.2. Because
the objective measure variables wused in equation 5.5-1 contain all
the information needed to estimate the most significant parametric
subjective qualities, they in some sense span the perceptual space of

subjective composite acceptability. It is therefore reasonable to expect
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CHAPTER 6
PRECLASSIFIED OBJECTIVE SPEECH QUALITY MEASURES

6.1 Introduction

In the previous two chapters, two distinct approaches to the design of
objective speech quality measures were studied in some detail. Chapter 4
studied the use of aural models in designing objective measures while Chapter 5
studied the use of parametric objective measures for the same purpose. Both of
‘hese approaches met with some degree of success. This chapter introduces and
develops yet another separate approach to designing objective quality measures:

that of preclassifying (or labeling) the distortions before the application of

the objective measures. The basic procedure used in this approach has three
steps. In the first of these, each speech distortion to be measured is
assigned to a specific class of distortions. This classification may be done

either objectively or subjectively, although objective classification is much
more desirable. Once all of the distortions are classified, then separate
objective measures are designed for each separate class of distortion.

Finally, these separate classified objective measured are combined to form a

single, broadly based objective measure.

It is simple to show that the preclassification of distortions leads to
vast variations in the performance of simple objective measures. Figure 6.1-1
shows a plot of the correlation coefficient for a log spectral distance measure
as a function of the value of p in the Lp norm [6.1]. The results are shown
separately for the cases i1n which the objective measure is applied to all
distortions in the distorted data base, and three distortion subscts:
controlled distortions, waveform coders, and all coders. Clearly., the log
spectral distance measure performs much better on some of these distortions

than on others. The point here is that if the disicrtions could ve correctly

U
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2
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Figure 6.1-1 Plot of Log Spectral Distance Mecasures as a Function of p in the
Lp Norm for Four Different Distortion Classes
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classified, then objective measures which had been specifically designed for
the proper class could be applied, resulting in better overall performance.

6.2 Objective Measures for Narrow Distortion Classes

There are really two questions to be addressed here. The first question
is given a good measure for classifying measures, what is the expected
improvement in the overall performance of the objective measures. If the
performance improvement is small, then there is no need for more extensive
study. If the answer to the first question is positive, then the second
question is how to assign objectively a particular distortion to a particular
class in order o realize the expected improvement.

Figures 6.2-1 and 6.2-2 show the composite acceptability (CA) results for
the the six distortion levels of CVSD and APC respectively. In both cases, the
results are displayed parametrically as a function of talker. There are two
points which should be noted from these figures. First, for each individual
talker, these results could be well represented by a first or second order
regression model. Second, there is a considerable and consistent spread of
results between the talkers. Hence, subjective measure results from one talker
are not necessarily good predictors of subjective measure results from another
talker. Ciearly, a good classified objective measure must also exhibit this
talker selectivity if it is going to be a good predictor of subjective
responses.

Figures 6.2-3 and 6.2-4 illustrate the use of narrowly classified simple
otiective measures for CVSD and APC. The measures illustrated on these plots
include the log spectral distance measure with linear regression, the log
spectral distance measure with non-linear regression, and the short-time
frequency variant SNR. Clearly, the performance of these simple measures is
substantially improved by the classification process.

Figures 6.2-5 and 6.2-6 illustrate the use of narrowly classified
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i OBJECTIVE ESITMATES FOR CVSD FROM CLASSIFIED SIMPLE MEASURES :
o 4
@
3 Subjective Estimate
)
: _ - e
1 S Spectral Distance Measure
o)
= 2 J Nonlinear Spectral
: E Distance Measure
- 3 | ;
i_' & Short Time Frequency
E': g 2 Variant SNR
<
N .
(3 =
) 0
, % o | -
3
;‘ .
-
f 8
r )
.
i .
A
E 2 ; v ;
r.. kA L S .
e 0 1 2 3 4 5 6
. o
! Distortion Level -
'.. Figure 6 2-3 Objective Estimates for Composite Acceptability (CA) for CVSD from —_
r Simple Classified Objective Measures N
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Figure 6.2-4 Objective Estimates for Composite Acceptability (CA) for APC from
Simple Classified Objective Mecasures
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?f composite objective measures for CVSD and APC. In each case, the measure used

Eiz was trained specifically to predict only the distortions in the two classes.

-

i;i The objcctive measures used were the short-time frequency-variant SNR, a linecar

§! multi-regression composite measure, and a non-linear multi-regression compositc T
E weasure [6.1]. As can be seen from these plots, the performance of each of the ﬁ*lj
g;i narrowly defined objective measures is, on the whole, very good. Indeed, a ::ii

comparisons with Figures 6.2-1 and 8.2-2 show that these narrow objective

‘v
H

C NN NI )

measures are better predictors of CA than individual one-talker subjective

measures . Figures 6.2-7 and 6.4-8 1illustrate the reason for this good

performance. These figures show the cbjective and subjective estimates of
composite acceptability for the linear composite measure as a fuaction of

individual talker. Clearly, this measure has good talker selectivity.

’ Based on the above discussion, it is possible to make two general :ffj
statements. First, if the class of distortions of interest arc narrow erough, .-ié
oo
then il is possiblc to design composite measurcs which predict the subjective 7.fE
- 4
qualitly wi‘h remarkable accuracy. This is an important fact if the goal is to :gﬁ
determine if a known coding system is performing up to standard and to measure Ezli
the level of the reduced performance if it is not. Second, if the class of 1?1%
—d
r distortions of interest is broad, then the required task is to classify the ~%
;:, vandidate into a narrow class sc as to gain the advantage discussed above. So ]
;. the fundamental question reduces to finding procedures to classily distortions
[
e

objectively.

“
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6.3 identification of Homogeneous Subsets in the Distorted Data Base

6.3.1 Introduction

e v e .
!
!
i
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a
ST BV

There are two broad approaches to searching for improved objective

e

speech quality measures. The first is to find measures which providé improved

qualily cstimates over a broad runge of distortions. The second is to find

1 : _ . . .®
N measures which provide improved quality cstimates sver a restricted range of T
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OBJECTIVE ESITMATES FOR CVSD FROM CLASSIFIED COMPOSITE MEASURES
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Figurc 6.2-5 Objective Estimates for Composite Acceptability (CA) for CVSD from
Composite Classifieu Ubjective mcasures
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Figure 6.2-7 Composite Acceptability and Estimated Composite Acceptability for
CVSD as a Function of Talker and Distortion Level
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Figure 6 2-8 Composite Acceptability and Estimated Composite Acceptability for

APC as a Function of Talker and Distortion Level
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distortions. As stated, the two approaches are the same except for the number
or type of distortions that are considered in the analysis. The second approach
can be simplified, and the two approaches can be made more distinct if the
problem is restated as follows: the first approach searches for an objective
quality measure given a set of speech distortions, while the second approach
searches for a set of speech distortions given an objective quality measure. In
both cases the criterion to be satisfied by the search is maximization of the
correlation between the objective measure of speech quality and the subjective
measure of speech quality over the speech distortions considered. This section
reports on work done wusing the second approach as a means of improving
objective speech quality measures.

One can think of the second approach as an objective classification
procedure in which speech distortions are objectively categorized into two
classes: one class contains the distortions used to assess the objective
measure’'s performance and the other class contains the distortions to be
ignered. The approach is similar to that of restricting objective measures to
operate only on certain classes of distortions, such as waveform coders; but
here the classes of distortions are specified objectively rather than
heuristically. The intent is to select a set of distortions objectively which,
to a great extent, is homogeneous with respect to the relationship between
their objectively measured speech quality and their subjectively measured
speech quality. [t was hoped that these homogeneous sets of distortions would
provide two insights into the objective measure being studied. First, that they
would show what kinds of specific distortions are best matched to an objective
mcasure and, Second, that they would indicate, by means of common f{catures of
the set’'s members, what overall physical characteristics of the distortions are
being measured by the objective quality measure to provide the estimate of

subjective spcech quality. The next step in this proccss would be, of course,
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to wuse these insights to adjust or reformulate an objective measure to give a
better performance over a given class of speech distortions.

In order to further motivate the approach of searching for homogeneous
subsels as a means of improving objective measures, consider an experiment
using the log area ratio objective measure. The experiment consists of three
resression analyses. In the first analysis a sixth order polynomial regression
model was used:

8

v‘f"-vﬁ_l‘lv,wrlr,'" Dali i
h ey . o ..ni‘-'

ca Ve o ..
CAi = BO +j=IBjOi + € 6.3-1

in which the objective measure variable, 0i was the log area ratio measure, and

¥

the dependent variable, CAi' was composite acceptability. The regression
coeflicients, Bj were estimated using the entire set of 44 speech distortions.
Subscript j is an index over the order of the model term and subscript i is an
index over the 1056 speaker-distortion systems in the distorted speech data
base. The resulting correlation of subjective composite acceptability to the
regression model's estimated composite acceptability was 0.67, so thal the log
area i1atio objective measure was able to account for only 44.4 percent of ‘the
variance of composite acceptability. This result is comparable to the
performance of several other simple objective measures, though this performance
18 not sufficient for providing reliable estimates of subjective specech

quality. Table 6.3-1 sumnarizes these results.

The second regression annlysis used the same form as equation 6.3-1,

° except that the data set was restriclted: just four waveform coder dislortions
were included in the analysis, as specified in Table 6.3-2(a). The results of

; the analysis, shown in Table 6.3-2(b), are that over the distortion subsct

f

,. specified the log area ratio objective measure was able to account for 49.9

'
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Table

Table

Regression
Degree Coefficient

67
-14

-1

OO H LN —- O

Multiple R-square

5.

.21
.10
99
.44
.18
.01
.00

. 44395

6.3-1 The results using a sixth order polynomial regression model to
estimate composite acceptability. The objective measure was the

log area ratio distance measure.

Waveform distortions

included in the analysis:

Adaptive differential pulse code modulation (ADPCM)

Adaptive pulse code modulation (APCM)

Continuously variable slope delta modulation (CVSD)
Adaptive predictive coder (APC)

(a)

Regression

Degree Coef

1

OO LA QLUN—-O

Multiple R-square

75.
68.
-110.
56.
-12.

-0.

ficient

73
04
80
09
98
.41
oe

.49913

(b)

6.3-2 Part (a) lists the four distortions over which the sixth order
analysis was done Part (b) lists the

polynomial

results of the regression analysis.
was the log area ratio measure.

regression
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percent of the variance o! composite acceptability. This is a surprisingly
small improvcment as compared to its performance over the entire sct of specch
distortions.

The centra) issue in this experiment is to find out why the log area
ratio objective measurc performed so poorly over an apparently homogenenus set
of waveform coder distortions. One method of investigating this issue is to
hypothesize that ecach distortion conforms to a distinctly different regression
mode! as opposed to a single model as in equation 6.3-1. A means to explore
this hypothesis is to use an indicator variable regression model, stated as

follows:

CA, = (BO + Blzl + 3222+ 8323) + (34 + BSZI + BBZZ + [3723)0i +e,
6.3-2
Note that this is a linear regression model as opposed to the polynomial
regression model used in the previous analysis. The variables Zj' which have
the value either zero or one, are indicator variables, so called because they

indicate to which distortion data 0i pelongs to as follows:

Waveform Coder

Zl Az Z3 Distortion
0 0 0 ADPCM

] 0 0 APCM

0 1 0 CVsDh

0 0 1 APC

The indicator variables permit cach distortion to have a wunique slope and
intercept in the regression model. The results of the analysis are shown in
Table 6.3-3. The model has improved dramatically, in that it now accounts for
83 percent of the variance of composite acceptability. Hence the hypothesis
that each distortion has a unique model was proven true. In particular, Table
6.3-3 shows that coefficicnts 85 through B7 are not statistically diffcrent

from zero, so that the major difference between models for cach distortion is
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Table

Multi

Variable

N0 s LN~ O

ple R

Regression
Coefficient

60.10
-4.7%
-0.23
16.10
11.29

0.94
-0.45

0.26

.9126

Multiple R-square .8329

6.1-3

Results
Again,

of the indicator variable regression model
the objective measure used was the log area ratio measure.

193

analysis.



that they each have a different intercept value. This is dramatically
illustrated in Figure 86.3-1. The solid lines are the regression curves for each
of the four speech distortions. One can see that they have a similar slope but
distinctly different intercepts. The dashed curve is the regression curve
obtained f{rom the previous sixth order polynomial regression analysis of this
data set. The polynomial curve did not represent the underlying model ol Pay of
the distortions very well, and hence had poor performance.

What this experiment clearly illustrates is that a heuristically chosen
group of speech distortions, such as a group ol waveform coders, does not
guarantee a homogeneous set of distortions relative to their regression models.
It therefore seems reasonable to use a blind statistical approach, as will be
discussed in the following section, to select speech distortions which do have
similar regression models and can therefore be grouped together and operated on
by a given objective measure to estimate subjective commosite acceptability.

6.3.2 The Objcective Classification Procedure

The distortion classification procedure assumes that the objective
measure is specified, and that it is a measure with only onec objective measure
variable. The objective measures that were considered are a group «f the best
simple objective measures proposed by Barnwell and Voiers [68.1]. Given the
objective measure, the procedure finds the 44 distortion subsets, with number
of members one through 44 respectively, which provide the best correlation
between the objective measure and subjective composite acceptability. The
procedure can be divided into two sections. The first section of the procedure
scarches through all possible distortion subsets for the subset of size N which
provides the greatest correlation between the selected objective mcasure and
composite acceptability. The correlation is compu’~i ,nly over the members of
the subset. [ect this subset of size N be cuiled S .. "nis avuld be the only

section of Lhe procedure were it not for the very icige aber of computalions
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60

SUBJECTIVE QUALITY

i -

[

e,

¥

2.10 3.5%0 4.90 6.30
OBJECTIVE MEASURE

%
-+
F S

Figure 6.3-1 Each of the four solid ourves represents the best linear
regression curve fit for each of four distortions., The dashed
line represents the bost sizxth order regression curve fit for sll

four distortions taken together.
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involved as the number of members in the subset grows larger. In the

'Q investigation of all subsets of size N the number of correlations that must be
ij computed is equal to the number of combinations of 44 items taken N at a time,
? or:
: 44!
cﬁ‘ S (6.3-3)
(44-N)! N!

An exhaustive search of all subsets of all sizes would then require a number of

correlation calculations equal to the sum of 44 items taken N at a time for N

-w\uw—qt-n‘m toee eon
PRI Tt

[

£ R

equals one to 44, a number which exceeds 1012. Because of this excessive
number of calculations, the first part of the procedure was only done for

subsets of size one through five.

The second part of the procedure circunvents the problem of burdensome

LT T T ERY

calculations at the expense 2f being sub-optimal. This part searches for a

distortion not already a member of set SN—I which, when added to SN-I' produces ﬂftfj
a new set SN which provides the greatest correlation between the objective L ;é
measure and composite acceptability. Again, the correlation is computed over i\ﬁi
the set S.. This step is repeated for N equals 6 through 44. The entir~ féi}%

algorithm is summarized in Figure 6.3.2-1.

el

€.3.3 Results of Objective Classification into Homogeneous Subsety

‘N‘{T_:l'__m”f_'f. rrr T W‘ .

The results of the subset classification experiment are, in general,

inconclusive. The graph in Figure 6.3.3-1 shows how the correlation coefficient

0 PRRE
b
i.m;-;.lg\.';_.:_r

for the best subset varies with the number of members in each subset for each

i

o of the objective measures studied. These results look quite promising: for

o te e
" mialaal

"y .

g each o/ the four measures, a subset of fifteen distortions , or one-third of
o the total number of distortions, had a correlation of better than 0.980.
Therefore all of these objective measures are producing very good estimates of

subjective composite acceptability for ecarh of the distortions in the subscts.

-
- o - L'.
N1 RIS { R

These results are less encouraging when one examines the types of distor'ions
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START

|

N=1

SEARCE THROUGH ALL SUBEETS
OF SIZE N AND DESIGNATE TEE
SUBSET ¥YI1B TEE MAXIMUM
CORRELATION AS SN

N=N+1

NC

N)S?/

l——————
y

SEARCH TEROUGH ALL. REMAIMING
DISTORTIONS FOR THE DISTORTION
WHICE, WHEN ADDED TO SN—l'
YIELDS A SUBSET
W¥ITE THE MAXIMUM CORRELATION,
LET THIS SUBSET BE SN'

YES

N=N+1

NO

N> 447

YES

6.3.2-1 A flowchart illustrating the slgorithm used in selecting
best distortion subsets for s given objective measure,
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Figure 6,3,3-1 Results of homogeneous subset analysis.




contained in the subsets. Table 6.3.3-1 lists the distortions contained in the
subset of fifteen distortions for each of the objective measures presented in
Figure 6.3.3-1.

The most remarkable aspect of these subsets is that each contains a very
diverse group of distortions. This is quite the contrary of what was hoped in
this experiment. A close examination of each subset re§eals that there are one
or two groups of the same distortion type within each subset. For example, the
subset associated with the 1log spectral distance measure contains three
contiguous bands of additive narrowband noise distortions and two contiguous
bands of angular pole distortions. Similarly, the subset associated with the
Itakura distance measure contains three contiguous bands of additive narrowband
noise and four bande of angular pole distortions. The subset associated with
the log area ratio distance measure contains three bandlimiting filtering
distortions, tlhree contiguous additive narrowband noise distortions and three
contiguous banded in-phase noise distortions. Though there are these limited
similarities between distortions in the subsets, in general there is not enough
commonality between distortions to make any {irm conclusions regarding the type
of distortions which are best suited for the objective measures. Since it is
not clear what general qualities these distortions heve in common, it is even
less clear what physical qualities of those distortions are being measured to
yield the wundeniably good estimates of subjective composite acceptability.
Hence we are, unfortunately, wunable to make hypotheses about the wunderlying
mechanisms which, in a statistical sense, make Lhis set homogeneous.

6.3.4 Conclusiong

Intuitively the blind statistical method for choosing homogeneous
distortion subsets, as presented in this section, has merit in that it
identifies, by the very nature of the algorithm, near-optimal subsets. For all

objective measures investigated the performance over subsets containing one-
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Log Spectral Distance
Measure:

center clipping

400 - 800 Hz noise

PD 1900 - 2600, frequency
PD 2600 - 3400, radial
ADPQUM

PD 200 - 400, frequency
BD 1300 -~ 1900

APCHM

VEV 7

VEV 13

800 - 1300 Hz noise

peak clipping

PD 1300 -~ 1900, frequency
0 - 400 Hz noise

APC

Log Area Ratio Distance
Measure:

bandpass filtering

2600 - 3400 Hz noise

PD 2600 - 3400, frequency
PO 200 - 400, frequency
BD 1900 - 2600

1900 -~ 2600 Hz pnoise

BD 100 - 400

1300 - 1900 Hz moise

PD 2600 - 3400, radial
highpass filtering

BD 800 - 1300

lowpass filtering

BD 1300 - 1900

APC

PD 1900 - 2600, frequency

Table 6.3.3-1 The homogeneous
objective measures.

v e T et LT e Mmoot Y RN TR T dT R YLt MW w L

Nonlinear Spectral Distance
Measure:

800 — 1300 Hz noise

PD 2600 - 3400, frequency
PD 200 - 400, frequency
400 - 800 Hz noise

VEV 13

VEV 7

APC

BD 1300 - 13900

APCH

PD 2600 - 3400, radial

0 - 400 Hz noise

BD 800 - 1300

center clipping

PD 1300 — 1900, frequency
quantization

Itakurs Distance
Measure:

800 -~ 1300 Hz noise
BD 1300 - 1900
PD 200 - 400, frequency
ADP (M
center clipping
PD 2600 — 3400, radial
APCM
PN 1900 - 2600, frequency
0 - 400 Hz moise
peak clipping
PD 1300 - 1900, frequency
BD 100 - 3500
400 - 800 Bz noise
PD 800 -~ 1300, radisl
PD 400 - 800, frequency

subsets of fifceen distortions for four

The subsets provide mazimum correlation

between the objective measure and composite acceptability.
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third of the total number of distortions was, in fact, very good, with
correlation with composite acceptability exceeding 0.90 in all cases. These
facts promote the blind statistical approach as opposed to a heuristic approach
to choosing distortion subsets. Unfortunetly, whereas a heuristic approach
based on grouping common distortion types, by its very nature, yields
physically homogeneous subsets, the blind statistical approach yields subsets
which are fragmented, containing small groups of diverse distortion types. This
is largely unsatistfying, in that no broad conclusions can be drawn as to the
physicai or perceptual nature of distortions which are best matched to the
objective measure being investigated.

This is not to say that the statistical approach for grouping
distortions is entirely rejected, but merely that it is inconclusive based on
an initial set ol experiments. The conclusion at this stage is, however, that
insight into the underlying mechanisms which cause an objective measure to be a
good match to a certain set of distortions, and hence permit the objective
measure make good estimates of subjective quality, are best found through other
experimental approaches. In particular, it is felt that investigation of
objective measures for estimating parametric subjective qualities would yield

more insight into these issues.
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